Guo Lei, Li Xiehui, Liu Yuting. Impacts of urbanization on extreme climate events in Sichuan-Chongqing region. J Appl Meteor Sci, 2023, 34(5): 574-585. DOI:  10.11898/1001-7313.20230506.
Citation: Guo Lei, Li Xiehui, Liu Yuting. Impacts of urbanization on extreme climate events in Sichuan-Chongqing region. J Appl Meteor Sci, 2023, 34(5): 574-585. DOI:  10.11898/1001-7313.20230506.

Impacts of Urbanization on Extreme Climate Events in Sichuan-Chongqing Region

DOI: 10.11898/1001-7313.20230506
  • Received Date: 2023-03-22
  • Rev Recd Date: 2023-06-25
  • Publish Date: 2023-09-30
  • Based on daily precipitation and temperature data as well as population, gross domestic product (GDP), land use and land cover change (LUCC), night lighting remote sensing data of 46 meteorological stations in Sichuan and Chongqing Region from 1971 to 2020, 21 extreme climate indices are calculated using RClimDex software, and the interannual variation trends of these indices are analyzed using linear trend method. The Mann-Kendall nonparametric method is used to test the significance levels of all indices. These meteorological stations are categorified to further investigate the impact of urbanization on extreme climate indices, especially the impact of urbanization on extreme climate events in Sichuan and Chongqing. It's found that the monthly maximum value of daily maximum temperature (TXx), maximum value of daily minimum temperature (TNx), minimum value of daily maximum temperature (TXn), minimum value of daily minimum temperature (TNn), summer days (SU25), occurrence of hot nights(TR20), warm nights (TN90P) and warm days (TX90P) all show an increasing trend in the last 50 years, while the frost days (FD0), cold nights (TN10P) and cold days (TX10P) show a decreasing trend, and the changes are all significant. The annual total precipitation in wet days (PRCPTOT), very heavy precipitation days (R25mm), very wet days (R95P), extremely wet days (R99P) and simple precipitation intensity index (SDII), which represent the extreme precipitation and the intensity of extreme precipitation, all show an increasing trend, indicating that the extreme high temperature and extreme precipitation in Sichuan and Chongqing Region have been increasing. The extreme indices show an increasing trend in all three types of meteorological sites. The increasing trend of TXx, TNx, TR20, TX90P and daily temperature range (DTR) are most obvious in urban stations, and FD0, TN10P, TX10P and DTR are most obvious in rural stations. Urbanization has basically no effects on TXx and TN90P at rural-urban sites, but has a greater effect on the monthly TXn, TNn, FD0, TR20 and DTR at rural and urban sites, as well as the number of TN10P and TN90P at urban sites. In Sichuan and Chongqing Region, among the rural sites, all indices show a significant increasing trend except for the monthly maximum 1-day precipitation (RX1DAY), monthly maximum 5-day precipitation (RX5DAY) and consecutive wet days (CWD), which show a non-significant decreasing trend. The influence of urbanization causes a decreasing trend in the number of heavy precipitation days (R10mm), R25mm, RX1DAY, RX5DAY, R95P and PRCPTOT in urban-rural and urban sites, and causes an increasing trend in SDII and CWD. The urbanization effects contribute 100.00% to R10mm, RX1DAY, RX5DAY, R95P and PRCPTOT for both urban-rural and urban sites.
  • Fig. 1  Geographical location and elevation(the shaded) of the target area

    Fig. 2  Time series of extreme temperature indices in Sichuan-Chongqing Region in 1971-2020

    Fig. 3  Time series of extreme temperature indices at different types of meteorological stations in Sichuan-Chongqing Region in 1971-2020

    Fig. 4  Time series of extreme precipitation indices in Sichuan-Chongqing Region in 1971-2020

    Fig. 5  Time series of extreme precipitation indices at different types of meteorological stations in Sichuan-Chongqing Region in 1971-2020

    Table  1  Definitions of extreme climate indices

    指数类型 分类 名称 指数缩写 定义 单位
    极端温度指数 极值指数 最高气温最大值 TXx 每月平均日最高气温最大值
    最低气温最大值 TNx 每月平均日最低气温最大值
    最高气温最小值 TXn 每月平均日最高气温最小值
    最低气温最小值 TNn 每月平均日最低气温最小值
    绝对指数 霜冻日数 FD0 一年中日最低气温小于0℃的日数 d
    夏季日数 SU25 一年中日最高气温大于25℃的日数 d
    热夜日数 TR20 一年中日最低气温大于20℃的日数 d
    相对指数 冷夜日数 TN10P 日最低气温小于10%分位值的日数 d
    冷昼日数 TX10P 日最高气温小于10%分位值的日数 d
    暖夜日数 TN90P 日最低气温大于90%分位值的日数 d
    暖昼日数 TX90P 日最高气温大于90%分位值的日数 d
    其他指数 月平均日较差 DTR 日最高气温和日最低气温之差的月平均值
    极端降水指数 绝对指数 中雨日数 R10mm 日降水量大于10 mm的日数 d
    大雨日数 R25mm 日降水量大于25 mm的日数 d
    1 d最大降水量 RX1DAY 一年中最大日降水量 mm
    5 d最大降水量 RX5DAY 一年中连续5 d最大日降水量 mm
    相对指数 强降水量 R95P 日降水量大于95%分位值的年累积降水量 mm
    特强降水量 R99P 日降水量大于99%分位值的年累积降水量 mm
    降水强度 SDII 年降水量与湿日日数(日降水量大于1 mm)的比值 mm·d-1
    持续指数 持续湿期 CWD 日降水量大于1 mm的最大持续降水日数 d
    其他指数 年降水量 PRCPTOT 日降水量大于1 mm的日累积量值 mm
    DownLoad: Download CSV

    Table  2  Interdecadal change rates of extreme temperature indices in Sichuan-Chongqing Region

    分类 指数 变化率
    极值指数 最高气温最大值 0.37℃·(10 a)-1
    最低气温最大值 0.24℃·(10 a)-1
    最高气温最小值 0.35℃·(10 a)-1
    最低气温最小值 0.37℃·(10 a)-1
    绝对指数 霜冻日数 -2.68 d·(10 a)-1
    夏季日数 3.82 d·(10 a)-1
    热夜日数 1.67 d·(10 a)-1
    相对指数 冷夜日数 -3.24 d·(10 a)-1
    冷昼日数 -1.85 d·(10 a)-1
    暖夜日数 2.97 d·(10 a)-1
    暖昼日数 3.39 d·(10 a)-1
    其他指数 月平均日较差 0.02℃·(10 a)-1*
    注:*表示达到0.1显著性水平,未标注表示达到0.01显著性水平。
    DownLoad: Download CSV

    Table  3  Urbanization effects of extreme temperature indices

    分类 指数 A1 A2 A3 ΔA21 ΔA31 E21/% E31/%
    极值指数 最高气温最大值 0.36 0.35 0.41 0.01 0.05 2.44 12.20
    最低气温最大值 0.23 0.19 0.30 -0.05 0.06 13.33 23.33
    最高气温最小值 0.35 0.45 0.25** 0.10 -0.10 40.00 40.00
    最低气温最小值 0.51 0.45 0.14** -0.06 -0.37 42.86 100.00
    绝对指数 霜冻日数 -4.41 -2.99 -0.65 1.42 3.76 100.00 100.00
    夏季日数 3.29 4.11 4.05 0.82 0.76 20.25 18.77
    热夜日数 0.45 1.76 2.80 1.31 2.35 46.79 83.93
    相对指数 冷夜日数 -3.81 -3.30 -2.60 0.51 1.21 19.62 46.54
    冷昼日数 -2.07 -1.97 -1.50 0.10 0.57 6.67 38.00
    暖夜日数 3.28 3.31 2.31 -0.03 -0.97 1.30 41.99
    暖昼日数 2.88 3.63 3.67 0.75 0.79 20.44 21.53
    其他指数 月平均日较差 -0.04*** 0.05** 0.06** 0.09 0.01 100.00 100.00
    注:**表示达到0.05显著性水平,***表示未达到0.05显著性水平,未标注表示达到0.01显著性水平。
    DownLoad: Download CSV

    Table  4  Interdecadal change rates of extreme precipitation indices in Sichuan-Chongqing Region

    分类 指数 变化率
    绝对指数 中雨日数 0.14 d·(10 a)-1
    大雨日数 0.15 d·(10 a)-1 **
    1 d最大降水量 -0.03 mm·(10 a)-1
    5 d最大降水量 -0.22 mm·(10 a)-1
    相对指数 强降水量 3.63 mm·(10 a)-1*
    特强降水量 2.75 mm·(10 a)-1*
    降水强度 0.08(mm ·d)-1·(10 a)-1*
    持续指数 持续湿期 -0.08 d·(10 a)-1
    其他指数 年降水量 2.77 mm·(10 a)-1*
    注:*和**分别表示达到0.1,0.05显著性水平。
    DownLoad: Download CSV

    Table  5  Urbanization effects of extreme precipitation indices

    分类 指数 A1 A2 A3 ΔA21 ΔA31 E21/% E31/%
    绝对指数 中雨日数 0.51** -0.09 0.01 -0.60 -0.50 100.00 100.00
    大雨日数 0.21*** 0.15* 0.08 -0.06 -0.13 75.00 100.00
    1 d最大降水量 0.57*** -0.43 -0.24 -1.00 -0.81 100.00 100.00
    5 d最大降水量 1.13* -1.14 -0.64 -2.27 -1.77 100.00 100.00
    相对指数 强降水量 7.85*** 1.84 11 -6.01 -6.65 100.00 100.00
    特强降水量 3.15*** -0.94 6.04 -4.09 2.89 67.72 47.85
    降水强度 0.07*** 0.09** 0.09 0.02 0.02 22.22 22.22
    持续指数 持续湿期 -0.09 -0.07 -0.08 0.02 0.01 25.00 12.50
    其他指数 年降水量 5.62** 3.17 -0.47 -2.45 -6.09 100.00 100.00
    注:*,**和***分别表示达到0.1,0.05和0.01显著性水平。
    DownLoad: Download CSV
  • [1]
    Jiang T, Zhai J Q, Luo Y, et al. Advances in climate change impact adaptation and vulnerability assessment reporting: New perceptions from IPCC AR5 to AR6. Trans Atmos Sci, 2022, 45(4): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202204003.htm
    [2]
    Lin A L, Gu D J, Peng D D, et al. Climatic characteristics of regional persistent heat event in in the eastern China during recent 60 years. J Appl Meteor Sci, 2021, 32(3): 302-314. doi:  10.11898/1001-7313.20210304
    [3]
    Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi:  10.11898/1001-7313.20220603
    [4]
    United Nations, Department of Economic and Social Affairs, Population Ddivision. World Urbanization Prospects: The 2018 Revision. New York: United Nations, 2018.
    [5]
    Peng Y Y, Liu Y, Miao Y C. A numerical study on impacts of greenhouse gases on Asian summer monsoon. J Appl Meteor Sci, 2021, 32(2): 245-256. doi:  10.11898/1001-7313.20210209
    [6]
    Luo X Y, Chen M X. Research progress on the impact of urbanization on climate change. Adv Earth Sci, 2019, 34(9): 984-997. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201909012.htm
    [7]
    Wang Z, Luo H, Li Y L, et al. Effects of urbanization on temperatures over the Qinling Mountains in the past 50 years. J Appl Meteor Sci, 2016, 27(1): 85-94. doi:  10.11898/1001-7313.20160109
    [8]
    Karl T, Diaz H, Kukla G. Urbanization: Its detection and effect in the United States climate record. J Climate, 1988, 1: 1099-1123. doi:  10.1175/1520-0442(1988)001<1099:UIDAEI>2.0.CO;2
    [9]
    Sun Y, Hu T, Zhang X, et al. Contribution of global warming and urbanization to changes in temperature extremes in Eastern China. Geophys Res Lett, 2019, 46: 11426-11434. doi:  10.1029/2019GL084281
    [10]
    Tang G L, Ren G Y, Zhou J X. Change of urban heat island intensity and its effect on surface mean air temperature records in Southwest China. J Appl Meteor Sci, 2008, 19(6): 722-730. doi:  10.3969/j.issn.1001-7313.2008.06.012
    [11]
    Ren G Y, Zhang L, Bian T, et al. Urbanization effect on change of daily temperature at Shijiazhuang Weather Station. Chinese J Geophys, 2015, 58(2): 398-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201502005.htm
    [12]
    Shepherd J, Pierce H, Negri A. Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J Appl Meteor Climatol, 2002, 41(7): 689-701. doi:  10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2
    [13]
    Wu M W, Luo Y L, Chen F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J Appl Meteor Climatol, 2019, 58: 1799-1819. doi:  10.1175/JAMC-D-18-0284.1
    [14]
    He Y X, Xu Y P, Li Z Y, et al. The impacts and its contribution rate of urbanization on extreme precipitation, 1976-2015: A case study in the Lake Taihu Plain Region. Lake Sci, 2022, 34(1): 262-271. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202201021.htm
    [15]
    Zhang X L, Liu M N, Qing Q, et al. Extreme temperature change and urbanization contribution in Chengdu from 1960 to 2018. Plateau Mountain Meteor Res, 2022, 42(1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202201002.htm
    [16]
    Huang X Y, Li X H. Future projection of rainstorm and flood disaster risk in Southwest China based on CMIP6 models. J Appl Meteor Sci, 2022, 33(2): 231-243. doi:  10.11898/1001-7313.20220209
    [17]
    Wang H, Yan Y, Long K, et al. Relationships between rapid urbanization and extreme summer precipitation over the Sichuan-Chongqing Area of China. Earth Sci, 2022, 10. DOI:  10.3389/feart.2022.909547.
    [18]
    Luo H, Xiao D X, Kuang Q M, et al. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin. J Appl Meteor Sci, 2020, 31(4): 460-470. doi:  10.11898/1001-7313.20200408
    [19]
    National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook 2021. Beijing: China Statistics Press, 2021.
    [20]
    Fu J Y, Jiang D, Huang Y H. China Km-grid Population Distribution Dataset. Global Change Scientific Data Publishing System, 2014.
    [21]
    Huang Y H, Jiang D, Fu J Y. China Km-grid GDP Distribution Dataset. Global Change Scientific Data Publishing System, 2014.
    [22]
    Alexander L, Zhang X, Peterson T, et al. Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos, 2006, 111. DOI:  10.1029/2005JD006290.
    [23]
    WMO. 2010: Report of the Meeting of the Management Group of the Commission for Climatology. Geneva, 2010.
    [24]
    Zhou Y Q, Ren G Y. Urbanization effect on long-term trends of extreme temperature events in North China. Plateau Meteor, 2014, 33(6): 1589-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201406014.htm
    [25]
    Yang Y A, Xu X Y, Hu Y L, et al. Analysis of pollution characteristics, Ozone formation potential and sources of ambient VOCs on typical small and medium-sized cities in Chengdu-Chongqing Region. Environ Monit China, 2023, 39(2): 125-138. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202302013.htm
    [26]
    Cao C, Lee X H, Liu S D, et al. Urban heat islands in China enhanced by haze pollution. Nat Commun, 2016, 7. DOI:  10.1038/ncomms12509.
    [27]
    Xiao D, Chen J, Chen Z, et al. Effect simulation of Chengdu underlying surface information on urban meteorology. Meteor Mon, 2011, 37(3): 298-308. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201103008.htm
    [28]
    Zhao L, Li X H, Smith R B, et al. Strong contributions of local background climate to urban heat islands. Nature, 2014, 511: 216-219.
    [29]
    Zhao X, Wu Y, Feng Y, et al. Influence of Chengdu urban development on local climate. Plateau Mountain Meteor Res, 2021, 41(4): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX202104014.htm
    [30]
    Han W C, Li Z Q, Wu F, et al. The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect. Atmos Chem Phys, 2020, 20(11): 6479-6493.
    [31]
    Wang C X, Gao S T, Ran L K, et al. Effects of topographic perturbation on the precipitation distribution in Sichuan. J Appl Meteor Sci, 2019, 30(5): 586-597. doi:  10.11898/1001-7313.20190507
    [32]
    Yuan Y F, Zhai P M. Latest understanding of extreme weather and climate events under global warming and urbanization influences. Trans Atmos Sci, 2022, 45(2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202202001.htm
    [33]
    Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification of algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. doi:  10.11898/1001-7313.20220303
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(5)

    Article views (525) PDF downloads(107) Cited by()
    • Received : 2023-03-22
    • Accepted : 2023-06-25
    • Published : 2023-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint