Citation: | Wang Haiping. Impacts of upper tropospheric cold low on the track of Typhoon In-fa in 2021. J Appl Meteor Sci, 2023, 34(5): 586-597. DOI: 10.11898/1001-7313.20230507. |
Fig. 1 The best track and numerical model 120 h track forecast of Typhoon In-Fa from 2000 BT 19 Jul to 2000 BT 24 Jul in 2021
(a)initiated at 2000 BT 19 Jul,(b)initiated at 2000 BT 20 Jul, (c)speed of the best track moving and numerical model forecast initiated at 2000 BT 19 Jul, (d)12-120 h track errors of numerical model initiated at 2000 BT 19 Jul and 2000 BT 20 Jul
Fig. 10 Composited 500 hPa height of forecast (the red contour) and analysis field (the blue contour) for westbound group members(a) and northwest group members(b) in ECMWF 72 h forecast initiated at 2000 BT 19 Jul 2021 (unit:gpm) (the black curve denotes the best track, the brown curve denotes the forecast track)
Fig. 11 200 hPa wind stream field (the streamline) on 22 Jul 2021 and wind speed diagram (the shaded) (a)CMA-TYM forecast initiated at 2000 BT 19 Jul, (b)ECMWF forecast initiated at 2000BT 19 Jul, (c)CMA-TYM forecast initiated at 2000 BT 20 Jul, (d)ECMWF forecast initiated at 2000 BT 20 Jul, (e)analysis fields of ERA5 at 2000 BT 22 Jul
[1] |
Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602
|
[2] |
Qian C H, Zhang F Q, Benjamin W, et al. Probabilistic evaluation of the dynamics and prediction of super Typhoon Megi. Wea Forecasting, 2013, 28(6): 1562-1577. doi: 10.1175/WAF-D-12-00121.1
|
[3] |
Campenella C M, Possie N E. Upper-level cut-off lows in southern South America. Meteor Atmos Phys, 2007, 96: 181-191. doi: 10.1007/s00703-006-0227-2
|
[4] |
Chen L S, Ding Y H. An Introduction to the Western Pacific Typhoon. Beijing: Science Press, 1979: 318-474.
|
[5] |
Patla J E, Stevens D G, Barnes M. A conceptual model for the influence of TUTT cells on tropical cyclone motion in the northwest Pacific Ocean. Wea Forecasting, 2009, 24: 1215-1235. doi: 10.1175/2009WAF2222181.1
|
[6] |
Wen D, Li Y, Wei N, et al. An ensemble analysis on abrupt northward turning of Typhoon Meranti(1010) under the influence of an upper-tropospheric cold low. Chinese J Atmos Sci, 2019, 43(4): 730-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201904017.htm
|
[7] |
Yan Z Y, Ge X Y, Wang Z. Understanding the impacts of upper-tropospheric cold low on Typhoon Jongdari(2018) using piecewise potential vorticity inversion. Mon Wea Rev, 2021, 149: 1499-1515. doi: 10.1175/MWR-D-20-0271.1
|
[8] |
Wei N, Li Y, Zhang D L, et al. A statistical analysis of the relationship between upper-tropospheric cold low and tropical cyclone track and intensity change over the western North Pacific. Mon Wea Rev, 2016, 144(5): 1805-1822. doi: 10.1175/MWR-D-15-0370.1
|
[9] |
Chen G, Chou L F. An investigation of cold vortices in the upper troposphere over the western North Pacific during the warm season. Mon Wea Rev, 1994, 122: 1436-1448. doi: 10.1175/1520-0493(1994)122<1436:AIOCVI>2.0.CO;2
|
[10] |
Davis C A. Piecewise potential vorticity inversion. J Atmos Sci, 1992, 49: 1397-1411. doi: 10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2
|
[11] |
Wu C C, Emanuel K. Potential vorticity diagnostics of hurricane movement. Part Ⅰ: A case study of Hurricane Bob(1991). Mon Wea Rev, 1995, 123: 69-92. doi: 10.1175/1520-0493(1995)123<0069:PVDOHM>2.0.CO;2
|
[12] |
Wu C C, Emanuel K. Potential vorticity diagnostics of hurricane movement. Part Ⅱ: Tropical Storm Ana(1991) and Hurricane Andrew(1992). Mon Wea Rev, 1995, 123: 93-109. doi: 10.1175/1520-0493(1995)123<0093:PVDOHM>2.0.CO;2
|
[13] |
Zhou M Z, Xu J. Covariation relationship between tropical cyclone intensity and size change over the Northwest Pacific. J Appl Meteor Sci, 2023, 34(4): 463-474. doi: 10.11898/1001-7313.20230407
|
[14] |
Qin H, Zheng F Q, Wu L Q. The interaction between intensity and rainfall of Typhoon Rammasun(1409). J Appl Meteor Sci, 2022, 33(4): 477-488. doi: 10.11898/1001-7313.20220408
|
[15] |
Chan J C, Gray W M. Tropical cyclone movement and surrounding flow relationships. Mon Wea Rev, 1982, 110: 1354-1374. doi: 10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2
|
[16] |
Chan J C, Williams R T. Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part Ⅰ: Zero mean flow. J Atmos Sci, 1987, 44: 1257-1265. doi: 10.1175/1520-0469(1987)044<1257:AANSOT>2.0.CO;2
|
[17] |
Fei L, Li X F. The influence of structure of upper-tropospheric cold vortex on typhoon motion. J Appl Meteor Sci, 1993, 4(1): 1-7. http://qikan.camscma.cn/article/id/19930105
|
[18] |
Wu L G, Wang B. A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon Wea Rev, 2000, 128: 1899-1911. doi: 10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2
|
[19] |
Chan J C, Ko F M, Lei Y M. Relationship between potential vorticity tendency and tropical cyclone motion. J Atmos Sci, 2002, 59: 1317-1336. doi: 10.1175/1520-0469(2002)059<1317:RBPVTA>2.0.CO;2
|
[20] |
Shapiro L J. Potential vorticity asymmetries and tropical cyclone motion. Mon Wea Rev, 1999, 127: 124-131. doi: 10.1175/1520-0493(1999)127<0124:PVAATC>2.0.CO;2
|
[21] |
Zhang S J, Chen L S, Xu X D. The diagnoses and numerical simulation on the unusual track of Helen(9505). Chinese J Atmos Sci, 2005, 29(6): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506008.htm
|
[22] |
Zhang X H, Zhang L F, Zhou H S, et al. Interaction and influence of binary typhoons. J Appl Meteor Sci, 2019, 30(4): 456-466. doi: 10.11898/1001-7313.20190406
|
[23] |
Wang H P, Dong L, Xu Y L, et al. Analysis on main characteristics of Typhoon In-fa and difficulties in its track forecast. J Marine Meteor, 2022, 42(1): 83-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202301004.htm
|
[24] |
Ma S H, Zhang J, Qu A X, et al. Impacts to tropical cyclone prediction of GRAPES_TYM from increasing of model vertical levels and enlargement of model forecast domain. Acta Meteor Sinica, 2021, 79(1): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101007.htm
|
[25] |
Dvorak V F, Smigielski F. A Workbook on Tropical Clouds and Cloud Systems Observed in Satellite Image//National Oceanic and Atmospheric Administation, National Environmental Satellite, Data, and Information Service and National Weather Service, 1990-1993, 1993.
|
[26] |
Zheng Q, Mao C Y, Ding L H, et al. Comparison of cloud characteristics between Typhoon Lekima(1909) and Typhoon Yagi(1814). J Appl Meteor Sci, 2022, 33(1): 43-55. doi: 10.11898/1001-7313.20220104
|
[27] |
Chen Y A, Wu C C. Environmental forcing of upper-troposhperic cold low on tropical cyclone intensity and structural change. J Atmos Sci, 2023, 80: 1123-1144.
|
[28] |
George J E, Gray W M. Tropical cyclone motion and surrounding parameter relationships. J Appl Meteor, 1976, 15: 1252-1264.
|
[29] |
Velden C S, Leslie L M. The basic relationship between tropical cyclone intensity and the depth of the environmental steering layer in the Austrian Region. Wea Forecasting, 1991, 6(2): 244-253.
|
[30] |
Dong K Q, Neumann C J. The relationship between tropical cyclone motion and environmental geostrophic nows. Mon Wea Rev, 1986, 114(1): 115-122.
|
[31] |
Sanders F, Adams N J, Gordon B, et al. Further development of a barotropic operational model for predicting paths of tropical storms. Mon Wea Rev, 1980, 108(5): 642-654.
|
[32] |
Xu Y L, Lü X Y, Zhang L, et al. Analysis on the characteristics and forecasting difficulty of severe Typhoon Fitow(No. 1323). Meteor Mon, 2015, 41(10): 1222-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201510005.htm
|
[33] |
Zhang M, Yu H P, Huang J P, et al. Assessment on systematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2018, 29(5): 571-583. doi: 10.11898/1001-7313.20180506
|
[34] |
Ma S H, Zhang J, Shen X S, et al. The upgrade of GRAPE_TYM in 2016 and its impacts on tropical cyclone prediction. J Appl Meteor Sci, 2018, 29(3): 257-269. doi: 10.11898/1001-7313.20180301
|
[35] |
Huang J P, Dong P M, Li C, et al. Influences of sensitive initial error on the numerical forecast of Typhoon Kammuri(0809). J Appl Meteor Sci, 2013, 24(4): 425-434. http://qikan.camscma.cn/article/id/20130405
|
[36] |
Liu Y Z, Zhang L, Chen J, et al. An improvement of the linearized planetary boundary layer parameterization scheme for CMA-GFS 4DVar. J Appl Meteor Sci, 2023, 34(1): 15-26. doi: 10.11898/1001-7313.20230102
|