Wu Xiaotian, Wang Xiaoyan, Zheng Dong, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. DOI:  10.11898/1001-7313.20230509.
Citation: Wu Xiaotian, Wang Xiaoyan, Zheng Dong, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. DOI:  10.11898/1001-7313.20230509.

Effects of Different Aerosols on Cloud-to-ground Lightning Activity in the Yangtze River Delta

DOI: 10.11898/1001-7313.20230509
  • Received Date: 2023-04-03
  • Rev Recd Date: 2023-06-12
  • Publish Date: 2023-09-30
  • Lightning activity poses threats to human life and property safety. A large volume studies indicate that aerosol plays a significant role in lightning activity. To explore the effect of different types of aerosols on lightning activity in the Yangtze River Delta and its surrounding areas, cloud-to-ground (CG) lightning location data and aerosol optical depth from reanalysis dataset is analyzed in the target area(27.5°-35°N, 115°-122.5°E) during 2015-2021.The spatial distribution of aerosol optical depth (AOD) with CG lightning condition and without CG lightning condition, and monthly variation of aerosol concentration under two conditions are investigated. All the grids in the target region show that sulfate AOD is higher, while dust AOD is lower with CG lightning. In summer there are little differences between the AOD with CG lightning and without CG lightning conditions. In other months, more sulfate aerosol and less dust aerosol are found with CG lightning condition.The spatial distribution of CG lightning density difference under higher and lower AOD conditions is given. The results show that when the sulfate AOD is high, the CG lightning density of most grids is higher. The CG lightning density is significantly lower when the dust AOD is high.The correlation coefficient between CG lightning density and the AOD for different types of aerosols is calculated for the months when CG lightning is active. When the concentration of sulfate aerosol is low, the correlation coefficient between sulfate AOD and CG lightning density is significant. When the sulfate aerosol concentration exceeds a certain threshold, there is no significant correlation between CG lightning density and sulfate AOD. The positive correlation may be due to the fact that the cloud microphysical effect of sulfate aerosols can promote the development of convection. With sufficient water vapors, sulfate aerosols form cloud condensation nuclei and promote CG lightning activity. When the concentration of sulfate aerosols is higher than the threshold value, the cloud microphysical effect and the radiation effect of aerosol may be counterbalanced, which may lead to weak correlation between CG lightning density and aerosol concentration. The results also show a weak negative correlation between dust aerosol and CG lightning density in April, May, June, and no significant correlation in July, August, September. Considering the low concentration of dust aerosols in the Yangtze River Delta and its surrounding areas, the inhibitory effect of dust aerosols on CG lightning activity may not be just explained by the radiation effect. The large particle size of dust aerosol may play a significant role in suppressing CG lightning activity.
  • Fig. 1  Spatial distribution of cloud-to-ground lightning density, atmosphere AOD, sulfate AOD and dust AOD in the Yangtze River Delta from 2015 to 2021

    Fig. 2  Monthly averaged atmosphere AOD, sulfate AOD, dust AOD and cloud-to-ground lightning number in the Yangtze River Delta from 2015 to 2021

    Fig. 3  Spatial distribution of differences in monthly averaged atmosphere AOD, sulfate AOD and dust AOD between cloud-to-ground lightning days and no cloud-to-ground lightning days in the Yangtze River Delta from 2015 to 2021

    Fig. 4  Box plots of monthly averaged total AOD, sulfate AOD and dust AOD in cloud-to-ground lighting days and no cloud-to-ground lightning days in the Yangtze River Delta from Apr to Sep during 2015-2021

    Fig. 5  Spatial distribution of differences in cloud-to-ground lightning density between high and low AOD conditions

    Fig. 6  Scatter plots of cloud-to-ground lightning density and sulfate AOD in the Yangtze River Delta from Apr to Sep during 2015-2021

    Fig. 7  Scatter plots of cloud-to-ground lightning density and 850 hPa relative humidity in the Yangtze River Delta from Apr to Sep during 2015-2021

    Fig. 8  Scatter plots of sulfate AOD and 850 hPa relative humidity in the Yangtze River Delta from Apr to Sep during 2015-2021

    Fig. 9  Scatter plots of cloud-to-ground lightning density and dust AOD in the Yangtze River Delta from Apr to Sep during 2015-2021

  • [1]
    Chen S D, Zhang Y J, Yan X, et al. Ground potential rise and surge protective device damage caused by initial long continuous current process in triggered lightning. J Appl Meteor Sci, 2020, 31(2): 236-246. doi:  10.11898/1001-7313.20200210
    [2]
    Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi:  10.11898/1001-7313.20210308
    [3]
    Ren S L, Niu N, Qin D Y, et al. Extreme cold and snowstorm event in North America in February 2021 based on satellite data. J Appl Meteor Sci, 2022, 33(6): 696-710. doi:  10.11898/1001-7313.20220605
    [4]
    Fan J, Wang Y, Rosenfeld D, et al. Review of aerosol-cloud interactions: Mechanisms, significance and challenges. J Atmos Sci, 2016, 73(11): 4221-4252. doi:  10.1175/JAS-D-16-0037.1
    [5]
    Kaufman Y J, Tanré D, Holben B N, et al. Aerosol radiative impact on spectral solar flux at the surface, derived from principal-plane sky measurements. J Atmos Sci, 2002, 59(3): 635-646. doi:  10.1175/1520-0469(2002)059<0635:ARIOSS>2.0.CO;2
    [6]
    Tao W K, Chen J P, Li Z, et al. Impact of aerosols on convective clouds and precipitation. Rev Geophys, 2012, 50. DOI:  10.1029/2011RG000369.
    [7]
    Proestakis E, Kazadzis S, Lagouvardos K, et al. Lightning activity and aerosols in the Mediterranean region. Atmos Res, 2016, 170: 66-75. doi:  10.1016/j.atmosres.2015.11.010
    [8]
    Lal D M, Ghude S D, Mahakur M, et al. Relationship between aerosol and lightning over Indo-Gangetic Plain(IGP), India. Climate Dyn, 2018, 50(9): 3865-3884.
    [9]
    Altaratz O, Kucienska B, Kostinski A, et al. Global association of aerosol with flash density of intense lightning. Environ Res Lett, 2017, 12(11). DOI:  10.1088/1748-9326/aa922b.
    [10]
    Naccarato K P, Pinto Jr O, Pinto I R C A. Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys Res Lett, 2003, 30(13). DOI:  10.1029/2003GL017496.
    [11]
    Steiger S M, Orville R E. Cloud-to-ground lightning enhancement over Southern Louisiana. Geophys Res Lett, 2003, 30(19). DOI:  10.1029/2003GL017923.
    [12]
    Kar S K, Liou Y A. Enhancement of cloud-to-ground lightning activity over Taipei, Taiwan in relation to urbanization. Atmos Res, 2014, 147/148: 111-120.
    [13]
    Westcott N E. Summertime cloud-to-ground lightning activity around major Midwestern urban areas. J Appl Meteor, 1995, 34(7): 1633-1642. doi:  10.1175/1520-0450-34.7.1633
    [14]
    Wang H C, Shi Z, Wang X J, et al. Cloud-to-ground lightning response to aerosol over air-polluted urban areas in China. Remote Sensing, 2021, 13(3). DOI:  10.3390/rs13132600.
    [15]
    Liang Y X, Che H Z, Wang H, et al. Aerosol optical properties and radiative effects during a pollution episode in Beijing. J Appl Meteor Sci, 2020, 31(5): 583-594. doi:  10.11898/1001-7313.20200506
    [16]
    Yang X Y, Che H Z, Chen Q L, et al. Retrieval of aerosol optical properties by sky radiometer over urban Beijing. J Appl Meteor Sci, 2020, 31(3): 373-384. doi:  10.11898/1001-7313.20200311
    [17]
    Altaratz O, Koren I, Yair Y, et al. Lightning response to smoke from Amazonian fires. Geophys Res Lett, 2010, 37(7). DOI:  10.1029/2010GL042679.
    [18]
    Tan Y B, Peng L, Shi Z, et al. Lightning flash density in relation to aerosol over Nanjing(China). Atmos Res, 2016, 174/175: 1-8. doi:  10.1016/j.atmosres.2016.01.009
    [19]
    Du S, Tan Y B, Wang R, et al. Lightning and aerosol correlation in different regions of China. Sci Technol Eng, 2018, 18(6): 22-30.
    [20]
    Zhao P G, Li Z Q, Xiao H, et al. Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China. Atmos Chem Phys, 2020, 20(21): 13379-13397. doi:  10.5194/acp-20-13379-2020
    [21]
    Sun M Y, Qie X S, Liu D X, et al. Analysis of potential effects of aerosol on lightning activity in Beijing metropolitan region. Chinese J Geophys, 2020, 63(5): 1766-1744.
    [22]
    Sun C F, Liu D X, Xiao X, et al. The electrical activity of a thunderstorm under high dust circumstances over Beijing metropolis region. Atmos Res, 2023, 285. DOI:  10.1016/j.atmosres.2023.106628.
    [23]
    Wang Q, Li Z, Guo J, et al. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements?. Atmos Chem Phys, 2018, 18(17): 12797-12816. doi:  10.5194/acp-18-12797-2018
    [24]
    Pan Z X, Mao F Y, Rosenfeld D, et al. Coarse sea spray inhibits lightning. Nature Communications, 2022, 13. DOI:  10.1038/s41467-022-31714-5.
    [25]
    Yang X, Li Z Q. Increases in thunderstorm activity and relationships with air pollution in southeast China. J Geophys Res Atmos, 2014, 119(4): 1835-1844.
    [26]
    Xia R, Zhang D, Wang B. A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J Appl Meteor Climatol, 2015(12): 2443-2460.
    [27]
    Randles C A, da Silva A M, Buchard V, et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part Ⅰ: System description and data assimilation evaluation. J Climate, 2017, 30(17): 6823-6850.
    [28]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J Royal Meteor Soc, 2020, 146(730): 1999-2049.
    [29]
    Stolz D C, Rutledge S A, Pierce J R. Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J Geophys Res Atmos, 2015, 120(12): 6207-6231.
    [30]
    Pérez-Invernón F J, Huntrieser H, Gordillo-Vázquez F J, et al. Influence of the COVID-19 lockdown on lightning activity in the Po Valley. Atmos Res, 2021, 263. DOI:  10.1016/j.atmosres.2021.105808.
    [31]
    Zhang T F, Xu Y J, Zhang J, et al. Structural characteristics of atmospheric relative humidity during lightning activity in Yunnan Province. J Appl Meteor Sci, 2010, 21(2): 180-188. http://qikan.camscma.cn/article/id/20100207
    [32]
    Yu H Y, Zhang J, Li T, et al. Spatia-temporal variation of atmospheric aerosol optical depth and the meteorological factors in Beijing and surrounding area from 2000 to 2013. J Meteor Sci, 2018, 38(4): 512-522. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201804009.htm
    [33]
    Gao Q, Liu Q, Bi K, et al. Estimation of aerosol activation ratio and water vapor supersaturation at cloud base using aircraft measurement. J Appl Meteor Sci, 2021, 32(6): 653-664. doi:  10.11898/1001-7313.20210602
    [34]
    Ma X Q, Guo X L, Liu N, et al. Aircraft measurements on properties of aerosols over the central and eastern Qinghai-Tibet Plateau. J Appl Meteor Sci, 2021, 32(6): 706-719. doi:  10.11898/1001-7313.20210606
    [35]
    Rosenfeld D, Andreae M O, Asmi A, et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev Geophys, 2014, 52: 750-808.
    [36]
    Yuan T, Remer L A, Pickering K E, et al. Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys Res Lett, 2011, 34(4). DOI:  10.1029/201GL046052.
    [37]
    Li Y Y, Sun H P, Yang J M, et al. Characteristics of aerosol and cloud over the central plain of North China in summer. J Appl Meteor Sci, 2021, 32(6): 665-676. doi:  10.11898/1001-7313.20210603
    [38]
    Hu J, Rosenfeld D, Ryzhkov A, et al. Polarimetric radar convective cell tracking reveals large sensitivity of cloud precipitation and electrification properties to CCN. J Geophys Res Atmos, 2019, 124(22): 12194-12205.
    [39]
    Sokolik I, Toon O. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 1996, 381: 681-683.
    [40]
    Andreae M O, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Science Reviews, 2008, 89(1/2): 13-41.
    [41]
    Zhu H, Li R, Yang S, et al. The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations. Atmos Chem Phys, 2023, 23: 2421-2437.
    [42]
    Mao H Y, Tian G, Huang Y H, et al. Mass size distributions and existing forms of sulfate and nitrate at atmospheric environment in Beijing. Environmental Science, 2011, 32(5): 1237-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105004.htm
    [43]
    Xiong J, Zhao T L, Bai Y Q, et al. Simulation and analyses of the potential impacts of different particle-size dust aerosols caused by the Qinghai-Tibet Plateau desertification on East Asia. Sustainability, 2020, 12(8). DOI:  10.3390/su12083231.
  • 加载中
  • -->

Catalog

    Figures(9)

    Article views (269) PDF downloads(38) Cited by()
    • Received : 2023-04-03
    • Accepted : 2023-06-12
    • Published : 2023-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint