[1]
|
|
[2]
|
|
[3]
|
Lin J L, Li Y, Liu L S. A heavy precipitation process over the Tibetan Plateau under the joint effects of a tropical cyclone and vortex. J Appl Meteor Sci, 2023, 34(2): 166-178. doi: 10.11898/1001-7313.20230204
|
[4]
|
|
[5]
|
|
[6]
|
Chang Y, Guo X L, Tang J, et al. Microphysical characteristics and precipitation formation mechanisms of convective clouds over the Tibetan Plateau. J Appl Meteor Sci, 2021, 32(6): 720-734. doi: 10.11898/1001-7313.20210607
|
[7]
|
Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601
|
[8]
|
Zhao L N, Mu X X, Ma C P, et al. A review on stable precipitation type forecast in winter. J Appl Meteor Sci, 2021, 32(1): 12-24. doi: 10.11898/1001-7313.20210102
|
[9]
|
Stewart R E, Thériault J M, Henson W. On the characteristics of and processes producing winter precipitation types near 0℃. Bull Amer Meteor Soc, 2015, 96(4): 623-639. doi: 10.1175/BAMS-D-14-00032.1
|
[10]
|
|
[11]
|
|
[12]
|
|
[13]
|
|
[14]
|
Birk K, Lenning E, Donofrio K, et al. A revised bourgouin precipitation-type algorithm. Wea Forecasting, 2021, 36(2): 425-438. doi: 10.1175/WAF-D-20-0118.1
|
[15]
|
|
[16]
|
|
[17]
|
Hux J D, Knappenberger P C, Michaels P J, et al. Development of a discriminant analysis mixed precipitation(DAMP) forecast model for mid-Atlantic winter storms. Wea Forecasting, 2001, 16(2): 248-259. doi: 10.1175/1520-0434(2001)016<0248:DOADAM>2.0.CO;2
|
[18]
|
|
[19]
|
Czys R R, Scott R W, Tang K C, et al. A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. Wea Forecasting, 1996, 11(4): 591-598. doi: 10.1175/1520-0434(1996)011<0591:APBNPF>2.0.CO;2
|
[20]
|
|
[21]
|
|
[22]
|
|
[23]
|
Forbes R, Tsonevsky I, Hewson T, et al. Towards predicting high-impact freezing rain events. ECMWF Newsletter, 2014, 141: 15-21.
|
[24]
|
|
[25]
|
Gascón E, Hewson T, Haiden T. Improving predictions of precipitation type at the surface: Description and verification of two new products from the ECMWF ensemble. Wea Forecasting, 2018, 33(1): 89-108.
|
[26]
|
Dong Q, Zhang F, Zong Z P. Objective precipitation type forecast based on ECMWF ensemble prediction product. J Appl Meteor Sci, 2020, 31(5): 527-542. doi: 10.11898/1001-7313.20200502
|
[27]
|
Scheuerer M, Gregory S, Hamill T M, et al. Probabilistic precipitation-type forecasting based on GEFS ensemble forecasts of vertical temperature profiles. Mon Wea Rev, 2017, 145(4): 1401-1412.
|
[28]
|
|
[29]
|
|
[30]
|
Lu H, Zhai P M, Qin W J, et al. A particle swarm optimization-neural network ensemble prediction model for persistent freezing rain and snow storm in Southern China. J Appl Meteor Sci, 2015, 26(5): 513-524. doi: 10.11898/1001-7313.20150501
|
[31]
|
|
[32]
|
|
[33]
|
Sun J, Cao Z, Li H, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. doi: 10.11898/1001-7313.20210101
|
[34]
|
|
[35]
|
ECMWF. Part Ⅳ: Physical Processes//ECMWF. IFS Documentation Cy43R1. ECMWF, 2016: 118-120.
|
[36]
|
Xue J S, Chen D H. Scientific Design and Application of Numerical Forecasting System GRAPES. Beijing: Science Press, 2008.
|
[37]
|
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|
[38]
|
Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES_Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103
|
[39]
|
Rutledge S A, Hobbs P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅷ: A model for the "seeder-feeder" process in warm-frontal rainbands. J Atmos Sci, 1983, 40(5): 1185-1206.
|
[40]
|
Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci, 1989, 46(20): 3077-3107.
|
[41]
|
Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Wea Rev, 2004, 132(1): 103-120.
|
[42]
|
Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos, 1997, 102(D14): 16663-16682.
|
[43]
|
|
[44]
|
Chen F, Dudhia J. Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ: Model implementation and sensitivity. Mon Wea Rev, 2001, 129: 569-585.
|
[45]
|
Han J, Pan H L. Sensitivity of hurricane intensity forecast to convective momentum transport parameterization. Mon Wea Rev, 2006, 134(2): 664-674.
|