指标 | 数据 | ResNet18 | ResNet50 | ResNet101 |
Acc | 训练集 | 99.92 | 99.98 | 99.99 |
测试集 | 100 | 100 | 100 | |
Los | 训练集 | 0.1 | 0.1 | 0.1 |
测试集 | 0.1 | 0.1 | 0.1 |
Citation: | Zhang Lin, Wu Lei, Li Feng, et al. Indentification of weather radar abnormal data based on deep learning. J Appl Meteor Sci, 2023, 34(6): 694-705. DOI: 10.11898/1001-7313.20230605. |
Fig. 7 R-LinkNet model discriminate electromagnetic interference and precipitation of Heixiazi Island radar in Heilongjiang
(a)observation image at 200334 BT 8 Jul 2022, (b)image after quality control by R-LinkNet model at 200334 BT 8 Jul 2022, (c)observation image at 100335 BT 5 Aug 2022, (d)image after quality control by R-LinkNet model at 100335 BT 5 Aug 2022, (e)observation image at 090233 BT 8 Sep 2022, (f)image after quality control by R-LinkNet model at 090233 BT 8 Sep 2022
Table 1 Accuracy of ResNet models (unit:%)
指标 | 数据 | ResNet18 | ResNet50 | ResNet101 |
Acc | 训练集 | 99.92 | 99.98 | 99.99 |
测试集 | 100 | 100 | 100 | |
Los | 训练集 | 0.1 | 0.1 | 0.1 |
测试集 | 0.1 | 0.1 | 0.1 |
Table 2 Accuracy, loss and intersection over union of model (unit:%)
数据 | Acc | Los | Iou | |||||
LinkNet | R-LinkNet | LinkNet | R-LinkNet | LinkNet | R-LinkNet | |||
训练集 | 97.8 | 98.6 | 0.7 | 0.4 | 73.8 | 83.4 | ||
测试集 | 97.8 | 98.6 | 0.7 | 0.4 | 73.5 | 83.2 |
Table 3 Evaluation of R-LinkNet model accuracy (unit:%)
测试时间 | R-LinkNet模型 | ||
7月 | 8月 | 9月 | |
7月 | 98.6 | 98.5 | 98.3 |
8月 | 98.2 | 98.6 | 98.5 |
9月 | 98.0 | 98.3 | 98.6 |
[1] |
Zhao R J, Liu L P, Zhang J. The quality control method of erroneous radar echo data generated by hardware fault. J Appl Meteor Sci, 2015, 26(5): 578-589. doi: 10.11898/1001-7313.20150507
|
[2] |
Shao N, Pei C, Liu C C, et al. Automatic idenfication system of abnormal radar echoes based on image processing technology. Meteor Sci Technol, 2013, 41(6): 993-997. doi: 10.3969/j.issn.1671-6345.2013.06.004
|
[3] |
Jiang Y, Liu L P, Zhuang W. Statistical characteristics of clutter and improvements of ground clutter identification technique with Doppler weather radar. J Appl Meteor Sci, 2009, 20(2): 203-213. http://qikan.camscma.cn/article/id/20090210
|
[4] |
Li F, Liu L P, Wang H Y, et al. Identification of ground clutter with C-band Doppler weather radar. J Appl Meteor Sci, 2014, 25(2): 158-167. http://qikan.camscma.cn/article/id/20140205
|
[5] |
Liu L P, Wu L L, Yang Y M. Development of fuzzy-logical two-step ground clutter detection algorithm. Acta Meteor Sinica, 2007, 65(2): 252-260. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702010.htm
|
[6] |
Wen H, Liu L P, Zhang Y. Improvements of ground clutter identification algorithm for Doppler weather radar. Plateau Meteor, 2017, 36(3): 736-749. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201703014.htm
|
[7] |
Wen H, Zhang L J, Liang H H, et al. Radial interference echo identification algorithm based on fuzzy logic for weather radar. Acta Meteor Sinica, 2020, 78(1): 116-127. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001010.htm
|
[8] |
Tan X, Liu L P, Fan S R. Statistical characteristics of sea clutter and its identification with the CINRAD. Acta Meteor Sinica, 2013, 71(5): 962-975. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201305015.htm
|
[9] |
Leng L, Huang X Y, Yang H P, et al. Recognition and application of Doppler weather radar clear air echoes. Meteor Sci Technol, 2012, 40(4): 534-541. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201204005.htm
|
[10] |
Chen Y J, Liang H H, Zhang L J. Characteristic analysis reflectivity factor of clear air echoes of Doppler weather radars. Meteor Sci Technol, 2022, 50(3): 303-313. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202203001.htm
|
[11] |
Ye F, Liang H H, Wen H, et al. Evaluation of homogeneity of new generation weather radar. Meteor Sci Technol, 2020, 50(3): 322-330. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202003002.htm
|
[12] |
Li F, Liu L P, Wang H Y, et al. Identification of non-precipitation meteorological echoes with Doppler weather radar. J Appl Meteor Sci, 2012, 23(2): 147-158. http://qikan.camscma.cn/article/id/20120203
|
[13] |
Xiao Y J, Wan Y F, Wang J, et al. Study of an automated Doppler radar velocity dealiasing algorithm. Plateau Meteor, 2012, 31(4): 1119-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201204028.htm
|
[14] |
Yang C, Liu L P, Hu Z Q, et al. An algorithm for chaos radial velocity identifying and processing in C-band Doppler radars running in the dual PRF mode. Acta Meteor Sinica, 2013, 70(4): 875-886. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204026.htm
|
[15] |
Wu C, Liu L P, Yang M L, et al. Key technologies of hydrometeor classification and mosaic algorithm for X-band polarimetric radar. J Appl Meteor Sci, 2021, 32(2): 200-216. doi: 10.11898/1001-7313.20210206
|
[16] |
Tang L, Zhang L, Langston C, et al. A physically based precipitation-nonprecipitation radar classifier using polarimetric and environmental data in a real-time national system. Wea Forecasting, 2014, 29(5): 1106-1119.
|
[17] |
Park H S, Ryzhkov A V, Zrnić D S, et al. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea Forecasting, 2009, 24(3): 730-748.
|
[18] |
Jiang Y, Xu Q, Zhang P F, et al. Using WSR-88D polarimetric data to identify bird-contaminated Doppler velocities. Adv Meteor, 2013, 1: 1-13.
|
[19] |
Zhu Y M, Ma S Q, Yang L, et al. Recognition and analysis of biological echo using WSR-88D dual-polarization weather radar in Nanhui of Shanghai. Meteor Environ Sci, 2019, 42(3): 118-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201903016.htm
|
[20] |
Zhang L, Yang H P. Non-precipitation identification technique on S-band WSR-88D polarization weather radar. Meteor Month, 2018, 44(5): 665-675. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201805007.htm
|
[21] |
Zhang L, Li F, Wu L, et al. Non-precipitation identification technique for CINRAD/SAD dual polarimetric weather radar. J Appl Meteor Sci, 2022, 33(6): 724-735. doi: 10.11898/1001-7313.20220607
|
[22] |
Zhang L, Li F, Feng W Y, et al. Research of data quality analysis and bias correction on mobile X-band dual-polarization weather radar. Meteor Mon, 2021, 47(3): 337-347. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202103007.htm
|
[23] |
Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. doi: 10.11898/1001-7313.20220506
|
[24] |
Li Y, Chen H L. Review of machine learning approaches for modern agrometeorology. J Appl Meteor Sci, 2020, 31(3): 257-266. doi: 10.11898/1001-7313.20200301
|
[25] |
Zhang Y F, Feng Z Z, Liu B. Lightning nowcasting early warning model based on convolutional neural network. Meteor Mon, 2021, 47(3): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202103010.htm
|
[26] |
Zhou K H, Zheng Y G, Han L, et al. Advances in application of machine learning to severe convective weather monitoring and forecasting. Meteor Mon, 2021, 47(3): 274-289. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202103002.htm
|
[27] |
Huang J W, Cai R H, Yao R, et al. Application of deep learning method to discrimination and forecasting of precipitation type. Meteor Mon, 2021, 47(3): 317-326. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202103005.htm
|
[28] |
Jin Z Q, Wang X M, Bao Y S, et al. Squall line identification method based on convolution neural network. J Appl Meteor Sci, 2021, 32(5): 580-591. doi: 10.11898/1001-7313.20210506
|
[29] |
Nawal H, Timothy D, Sebastian T, et al. A neural network quality-control scheme for improved quantitative precipitation estimation accuracy on the UK weather radar network. J Atmos Ocean Technol, 2021, 38(6): 1157-1172.
|
[30] |
Huangfu J, Hu Z Q, Zheng J F, et al. A study on polarization radar quantitative precipitation estimation using deep learning. Acta Meteor Sinica, 2022, 80(4): 565-577. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202204006.htm
|
[31] |
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi: 10.11898/1001-7313.20220301
|
[32] |
Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. doi: 10.11898/1001-7313.20220303
|
[33] |
Zhang F Y, Zhao M, Zhou Y Z, et al. Detection of diseased takifugu rubripes based on ResNet50 and transfer learning. Fishery Modern, 2021, 48(4): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HDXY202104007.htm
|
[34] |
Riyue G H. PyTorch Deep Learning Concise Actual Combat. Beijing: Tsinghua University Press, 2022.
|
[35] |
Zheng Z Y, Liang B W, Gu S Y. TensorFlow: A Framework for Google Deep Learning in Actual Combat. 2nd Ed. Beijing: Publishing House of Electronics Industry, 2018.
|
[36] |
Chen Y, Dang S W, Nie L, Loop detection algorithm based on resnet model. Intelligent Computer Appl, 2022, 12(8): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ202208039.htm
|
[37] |
Abhishek C, Culurciello E. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation. arXiv Preprint arXiv, 2017. DOI: 10.1109/VCIP.2017.8305148.
|
[38] |
Liu H T. Research on Remote Sensing Road Extraction Method Based on Improved Linknet. Harbin: Harbin Engineering University, 2021.
|
[39] |
Zhang Y. Research on Image Semantic Segmentation Algorithm Based on Deep Learning. Chengdu: Southwest University of Science and Technology, 2021.
|
[40] |
Yang X B. Road and Small Buliding Extraction Methods Based on Semantic Segmentation in Remote Sensing Image. Wuhan: Huazhong University of Science and Technology, 2019.
|