Hu Shuping, Lin Wen, Lin Changcheng, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. DOI:  10.11898/1001-7313.20230606.
Citation: Hu Shuping, Lin Wen, Lin Changcheng, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. DOI:  10.11898/1001-7313.20230606.

Physical Inspection of Randomized Trial for the Artificial Rain Enhancement Experiment at Gutian from 2014 to 2022

DOI: 10.11898/1001-7313.20230606
  • Received Date: 2023-07-09
  • Rev Recd Date: 2023-09-25
  • Publish Date: 2023-11-27
  • The verification of the effectiveness of artificial rain enhancement is a worldwide challenge. Based on random experiments of ground-based rocket artificial rain enhancement at Gutian from 2014 to 2022, physical verification of stage samples is carried out using radar macro parameters such as radar echo intensity, echo top height, and thickness of the negative temperature layer. The evolution characteristic analysis of dual-polarization parameters ZDR and KDP is conducted. The physical characteristic response of seeded cases is studied by combining ground raindrop size distribution data. The analysis results show that the non-seeded samples have a small increase in echo intensity, echo top height, and negative temperature layer thickness after hypothetical artificial precipitation enhancement operation, but then quickly decrease. Seeded samples generally show an increase in echo intensity after operation, reaching a peak after 36 minutes. There are 52.6%, 21.1% and 7.9% of seeded samples with maximum growth rates of 0-20%(excluding 0), 20%-50%(excluding 20%) and above 50%, respectively. Half of seeded samples show an increase in echo top height and negative temperature layer thickness, with the former showing a significant increase after 30 minutes and maintaining stability, while the latter increase significantly after 12 minutes. Among them, 36.8%, 13.2% and 2.6% of seeded samples increase with maximum growth rates of 0-20%(excluding 0), 20%-50%(excluding 20%) and over 50%, respectively. At the same time, the dual-polarization parameters ZDR and KDP show sustained enhancement after operation. From the physical response characteristics of seeded individual case, ZDR column appearing in the cloud after operation indicates that the upward airflow in the cloud has increased, causing the echo top height to rise and the echo intensity to increase or maintain. At the same time, KDP column also indicates that there are more large raindrops or partially melted ice particles in the cloud after operation. The ground rainfall size distribution shows a characteristic of increasing first with small and medium drops and then with large drops, resulting in an increase in spectral width. The maximum minute rainfall intensity generated by the cloud system within 50 minutes after the operation increases significantly, and the cumulative rainfall has increased by 49% compared to the operation time. In summary, cloud seeding helps the development, enhancement, and maintenance of clouds, not only increasing the number and size of precipitation particles, but also to some extent prolonging the life of the cloud.
  • Fig. 1  Change in radar echo intensity before and after operation

    Fig. 2  Changes in echo top height and negative temperature layer thickness before and after operation

    Fig. 3  Change in maximum of ZDR and KDP for seeded and non-seeded samples

    Fig. 4  Radar echo intensity sequence puzzle before and after operation on 4 May 2021 (operation period is 1703-1705 BT)

    Fig. 5  Cross-sections of ZH, ZDR and KDP of the seeded sample on 4 May 2021

    Fig. 6  Comparison of raindrop-scale mean spectra before and after operation

    Table  1  Change in radar echo intensity within 60 min after operation

    作业后状态 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    增强 31 81.6 12 30.8
    维持 5 13.1 8 20.5
    减弱 2 5.3 19 48.7
    注:增强含先增强后减弱、持续增强、先增强后维持3种情况,减弱含持续减弱、先减弱后维持两种情况,维持指参数连续30 min以上保持不变。
    DownLoad: Download CSV

    Table  2  Radar echo intensity growth rate within 60 min after operation

    增长率r/% 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    r<0 2 5.3 19 48.7
    r=0 5 13.1 8 20.5
    0<r≤20 20 52.6 10 25.7
    20<r≤50 8 21.1 2 5.1
    r>50 3 7.9 0 0
    注:参量X增长率:r=(X2-X1)/X1×100%,X1表示作业时样本的参量值,X2表示作业后样本参量X的极值。
    DownLoad: Download CSV

    Table  3  Change in radar echo top height within 60 min after operation

    最大回波顶高变化 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    增长 20 52.6 13 33.3
    维持 16 42.1 8 20.5
    降低 2 5.3 18 46.2
    注:增长含先增长后降低、先增长后维持、持续增长3种情况,降低含持续降低、先降低后维持两种情况,维持指参数连续30 min以上保持不变。
    DownLoad: Download CSV

    Table  4  Radar echo top height growth rate within 60 min after operation

    增长率r/% 催化样本 非催化样本
    样本量 比例/% 样本量 比例/%
    r<0 2 5.3 18 46.2
    r=0 16 42.1 8 20.5
    0<r≤20 14 36.8 11 28.2
    20<r≤50 5 13.2 2 5.1
    r>50 1 2.6 0 0
    DownLoad: Download CSV

    Table  5  Double ratio of radar echo parameters between seeded and non-seeded samples

    作业后时间 回波强度 回波顶高 负温层厚度
    6 min 1.00 1.02 1.01
    12 min 1.05 1.08 1.16
    18 min 1.10 1.08 1.17
    24 min 1.12 1.08 1.17
    30 min 1.18 1.10 1.21
    36 min 1.19 1.12 1.19
    42 min 1.18 1.17 1.22
    48 min 1.17 1.15 1.26
    54 min 1.19 1.20 1.31
    60 min 1.20 1.17 1.25
    DownLoad: Download CSV
  • [1]
    Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. doi:  10.3969/j.issn.1001-7313.2006.06.016
    [2]
    Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi:  10.3969/j.issn.1001-7313.2006.05.015
    [3]
    Zeng G P, Liu J. A research on a statistical simulation method for the test of the artificial rainfall effect. Acta Meteor Sinica, 1993, 51(2): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199302015.htm
    [4]
    Sun X Y, Wang J S, Wang J. Analysis of radar echoes on effects of rain enhancement by AgI-loading rockets. J Arid Meteor, 2005, 23(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200503006.htm
    [5]
    Yu L J. The Research of Physical Approaches for Effectiveness Evaluation of Artificial Precipitation Enhancement and Case Studies. Beijing: Chinese Academy of Meteorological Sciences, 2009.
    [6]
    Ye J D. Experimental design and effect test of artificial precipitation. Meteor Mon, 1979, 5(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197902010.htm
    [7]
    Wang F, Li J M, Yao Z Y, et al. Advances of quantitative evaluation studies of artificial precipitation enhancement in China. Meteor Mon, 2022, 48(8): 945-962. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202208001.htm
    [8]
    Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi:  10.11898/1001-7313.20190601
    [9]
    Lou X F, Fu Y, Su Z J. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. doi:  10.11898/1001-7313.20210202
    [10]
    Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi:  10.11898/1001-7313.20210601
    [11]
    Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi:  10.11898/1001-7313.20180207
    [12]
    Li D J, Tang R M, Jiang H, et al. Analysis on comprehensive observation of an artificial precipitation enhancement operation for convective clouds in Wuhan. J Arid Meteor, 2016, 34(2): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201602019.htm
    [13]
    Wang Y L, Yao Z Y, Lin C C. Radar echo response to rocket precipitation enhancement in a field operation. Meteor Sci Technol, 2016, 44(6): 1053-1059. doi:  10.3969/j.issn.1671-6345.2016.06.030
    [14]
    Zhu M J, Yuan Y, Liu S Y, et al. Analysis of Artificial Precipitation Enhancement Effect of Convective Cloud in Jianghuai Summer Based on Radar Echo. Annual Meeting of China Meteorological Society, 2016.
    [15]
    Wang Y L, Yao Z Y, Lin C C. Analysis of radar echoes at different heights before and after precipitation enhancement. J Arid Meteor, 2018, 36(4): 644-651. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201804014.htm
    [16]
    Cui D, Huang Y B, Xiao H, et al. Application of Doppler-radar data in the effect evaluation of artificial precipitation enhancement in Hainan Province. Trans Atmos Sci, 2012, 35(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201201009.htm
    [17]
    Wang Y L, Wang J. Discussion on random experiment method of ground precipitation enhancement operation. J Arid Meteor, 2015, 33(5): 756-760. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201505006.htm
    [18]
    Zhou Y L, Yao Z Y. Weather condition analysis and radar echo evaluation of precipitation enhancement operation for a stratiform mixed clouds. Meteor Environ Sci, 2017, 40(1): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201701004.htm
    [19]
    Tang R M, Xiang Y C, Ye J Y, et al. Application of data observed by several instruments in effective verification of artificial precipitation enhancement. Meteor Mon, 2009, 35(8): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200908007.htm
    [20]
    Hu W, Shen Y Y, Zeng G P. Study on artificial precipitation enhancement technology of convective clouds in summer in southern China. J Appl Meteor Sci, 2005, 16(3): 413-416. http://qikan.camscma.cn/article/id/20050351
    [21]
    Huang Y B, Mao Z Y, Xing F H, et al. Randomized effectiveness evaluation of artificially catalyzing heating-bottom cumulus in mountainous western Hainan Island. Meteor Sci Technol, 2019, 47(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201903016.htm
    [22]
    Jia S, Yao Z Y. Case study on the convective clouds seeding effects in Yangtze-Huaihe Region. Meteor Mon, 2016, 42(2): 238-245. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201602012.htm
    [23]
    Jia S. Technical Methods Study and Cases Analysis on the Testing of Convective Clouds Seeding Effects in Yangtze-Huaihe Region. Beijing: Chinese Academy of Meteorological Sciences, 2015.
    [24]
    Zha S J, Zhang H J, Li X X, et al. Numerical simulation of precipitation processes during the opening ceremony of the Nanjing 2014 Youth Olympic Games. Chinese J Atmos Sci, 2020, 44(6): 1258-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006008.htm
    [25]
    He H, Jin H, Li H Y, et al. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games. Clim Environ Res, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm
    [26]
    Liu W G, Tao Y, Zhou Y Q. Numerical simulation of the macro and micro physical responses of stratiform cloud seeding. Chinese J Atmos Sci, 2021, 45(1): 37-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101003.htm
    [27]
    Yue Z G, Yu X, Liu G H, et al. . Effect evaluation of an operational precipitation enhancement in cold clouds by aircraf. Acta Meteor Sinica, 2021, 79(5): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105011.htm
    [28]
    Zeng G P, Wu Z Y. Artificial Precipitation. Fuzhou: Fujian Science & Technology Publishing House, 1997.
    [29]
    Zeng G P, Wu M L, Lin C C, et al. A comprehensive evaluation of the effect of artificial precipitation in Gutian Reservior area. J Appl Meteor, 1993, 4(2): 154-161. http://qikan.camscma.cn/article/id/19930229
    [30]
    Zeng G P, Zhu D H, Wang Z L. An application study on the artificial rainfall over Gutian Reservoir region. Meteor Mon, 1997, 23(12): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX712.007.htm
    [31]
    Lin X M, Zheng S Z, Huang W J, et al. The influence of seeding operation on the raindrop spectrum at the worksite. J Nanjing Inst Meteor, 1988, 11(3): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198803011.htm
    [32]
    Lin C C, Yao Z Y, Lin W, et al. Analysis on cloud echoes characteristics and operational conditions of precipitation enhancement in Gutian of Fujian. Trans Atmos Sci, 2017, 40(1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201701015.htm
    [33]
    Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403
    [34]
    Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi:  10.11898/1001-7313.20210309
    [35]
    Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464.
    [36]
    Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203.
    [37]
    Jia X C, Liu Y G, Ding D P, et al. Combining disdrometer, microscopic photography, and cloud radar to study distributions of hydrometeor types, size and fall velocity. Atmos Res, 2019, 228: 176-185.
    [38]
    Lin C C, Gao B Y. Statistical analysis of radar echo parameters for the appraisement of rain-making experiments over Gutian area, Fujian Province. J Nanjing Inst Meteor, 1987, 10(3): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198703010.htm
    [39]
    Zeng G P, Fang S Z, Xiao F. The total analysis of the effect of artificial rainfall in Gutian Reservoir area, Fujian(1975-1986). Chinese J Atmos Sci, 1991, 15(4): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199104010.htm
    [40]
    Kumjian M R, Ryzhkov A V. The impact of size sorting on the polarimetric radar variables. J Atmos Sci, 2012, 69(6): 2042-2060.
    [41]
    He Q F, Lin W, Zhang S S, et al. Dual polarization parameters and precipitation particle spectrum characteristics of a spring hail event in southwestern Fujian. Meteor Mon, 2022, 48(7): 856-867. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202207004.htm
    [42]
    Bringi V N, Chandrasekar V(Li C, Zhang Y, Trans). Polarimetric Doppler Weather Radar: Principles and Applications. Beijing: China Meteorological Press, 2010: 263-349.
    [43]
    Kumjian M R, Mishra S, Giangrande S E, et al. Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J Geophys Res Atmos, 2016, 121(7): 3584-3607.
    [44]
    Sun Y, Ren G, Sun H P, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. doi:  10.11898/1001-7313.20230106
    [45]
    Lin W, Zhang S S, Luo C R, et al. Observational analysis of different intensity sever convective clouds by S-band dual-polarization radar. Meteor Mon, 2020, 46(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202001006.htm
    [46]
    Kumjian M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon Wea Rev, 2010, 138(10): 3762-3786.
    [47]
    Loney M L, Zrnić D S, Straka J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteor, 2002, 41(12): 1179-1194.
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(5)

    Article views (237) PDF downloads(69) Cited by()
    • Received : 2023-07-09
    • Accepted : 2023-09-25
    • Published : 2023-11-27

    /

    DownLoad:  Full-Size Img  PowerPoint