作业后状态 | 催化样本 | 非催化样本 | |||
样本量 | 比例/% | 样本量 | 比例/% | ||
增强 | 31 | 81.6 | 12 | 30.8 | |
维持 | 5 | 13.1 | 8 | 20.5 | |
减弱 | 2 | 5.3 | 19 | 48.7 | |
注:增强含先增强后减弱、持续增强、先增强后维持3种情况,减弱含持续减弱、先减弱后维持两种情况,维持指参数连续30 min以上保持不变。 |
Citation: | Hu Shuping, Lin Wen, Lin Changcheng, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. DOI: 10.11898/1001-7313.20230606. |
Table 1 Change in radar echo intensity within 60 min after operation
作业后状态 | 催化样本 | 非催化样本 | |||
样本量 | 比例/% | 样本量 | 比例/% | ||
增强 | 31 | 81.6 | 12 | 30.8 | |
维持 | 5 | 13.1 | 8 | 20.5 | |
减弱 | 2 | 5.3 | 19 | 48.7 | |
注:增强含先增强后减弱、持续增强、先增强后维持3种情况,减弱含持续减弱、先减弱后维持两种情况,维持指参数连续30 min以上保持不变。 |
Table 2 Radar echo intensity growth rate within 60 min after operation
增长率r/% | 催化样本 | 非催化样本 | |||
样本量 | 比例/% | 样本量 | 比例/% | ||
r<0 | 2 | 5.3 | 19 | 48.7 | |
r=0 | 5 | 13.1 | 8 | 20.5 | |
0<r≤20 | 20 | 52.6 | 10 | 25.7 | |
20<r≤50 | 8 | 21.1 | 2 | 5.1 | |
r>50 | 3 | 7.9 | 0 | 0 | |
注:参量X增长率:r=(X2-X1)/X1×100%,X1表示作业时样本的参量值,X2表示作业后样本参量X的极值。 |
Table 3 Change in radar echo top height within 60 min after operation
最大回波顶高变化 | 催化样本 | 非催化样本 | |||
样本量 | 比例/% | 样本量 | 比例/% | ||
增长 | 20 | 52.6 | 13 | 33.3 | |
维持 | 16 | 42.1 | 8 | 20.5 | |
降低 | 2 | 5.3 | 18 | 46.2 | |
注:增长含先增长后降低、先增长后维持、持续增长3种情况,降低含持续降低、先降低后维持两种情况,维持指参数连续30 min以上保持不变。 |
Table 4 Radar echo top height growth rate within 60 min after operation
增长率r/% | 催化样本 | 非催化样本 | |||
样本量 | 比例/% | 样本量 | 比例/% | ||
r<0 | 2 | 5.3 | 18 | 46.2 | |
r=0 | 16 | 42.1 | 8 | 20.5 | |
0<r≤20 | 14 | 36.8 | 11 | 28.2 | |
20<r≤50 | 5 | 13.2 | 2 | 5.1 | |
r>50 | 1 | 2.6 | 0 | 0 |
Table 5 Double ratio of radar echo parameters between seeded and non-seeded samples
作业后时间 | 回波强度 | 回波顶高 | 负温层厚度 |
6 min | 1.00 | 1.02 | 1.01 |
12 min | 1.05 | 1.08 | 1.16 |
18 min | 1.10 | 1.08 | 1.17 |
24 min | 1.12 | 1.08 | 1.17 |
30 min | 1.18 | 1.10 | 1.21 |
36 min | 1.19 | 1.12 | 1.19 |
42 min | 1.18 | 1.17 | 1.22 |
48 min | 1.17 | 1.15 | 1.26 |
54 min | 1.19 | 1.20 | 1.31 |
60 min | 1.20 | 1.17 | 1.25 |
[1] |
Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. doi: 10.3969/j.issn.1001-7313.2006.06.016
|
[2] |
Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi: 10.3969/j.issn.1001-7313.2006.05.015
|
[3] |
Zeng G P, Liu J. A research on a statistical simulation method for the test of the artificial rainfall effect. Acta Meteor Sinica, 1993, 51(2): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199302015.htm
|
[4] |
Sun X Y, Wang J S, Wang J. Analysis of radar echoes on effects of rain enhancement by AgI-loading rockets. J Arid Meteor, 2005, 23(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200503006.htm
|
[5] |
Yu L J. The Research of Physical Approaches for Effectiveness Evaluation of Artificial Precipitation Enhancement and Case Studies. Beijing: Chinese Academy of Meteorological Sciences, 2009.
|
[6] |
Ye J D. Experimental design and effect test of artificial precipitation. Meteor Mon, 1979, 5(2): 26-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX197902010.htm
|
[7] |
Wang F, Li J M, Yao Z Y, et al. Advances of quantitative evaluation studies of artificial precipitation enhancement in China. Meteor Mon, 2022, 48(8): 945-962. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202208001.htm
|
[8] |
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[9] |
Lou X F, Fu Y, Su Z J. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. doi: 10.11898/1001-7313.20210202
|
[10] |
Guo X L, Fu D H, Guo X, et al. Advances in aircraft measurements of clouds and precipitation in China. J Appl Meteor Sci, 2021, 32(6): 641-652. doi: 10.11898/1001-7313.20210601
|
[11] |
Fan Z C, Zhou S, Wang L, et al. Methods of aircraft-based precipitation enhancement operation for convective-stratiform mixed clouds in autumn in Hunan Province. J Appl Meteor Sci, 2018, 29(2): 200-216. doi: 10.11898/1001-7313.20180207
|
[12] |
Li D J, Tang R M, Jiang H, et al. Analysis on comprehensive observation of an artificial precipitation enhancement operation for convective clouds in Wuhan. J Arid Meteor, 2016, 34(2): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201602019.htm
|
[13] |
Wang Y L, Yao Z Y, Lin C C. Radar echo response to rocket precipitation enhancement in a field operation. Meteor Sci Technol, 2016, 44(6): 1053-1059. doi: 10.3969/j.issn.1671-6345.2016.06.030
|
[14] |
Zhu M J, Yuan Y, Liu S Y, et al. Analysis of Artificial Precipitation Enhancement Effect of Convective Cloud in Jianghuai Summer Based on Radar Echo. Annual Meeting of China Meteorological Society, 2016.
|
[15] |
Wang Y L, Yao Z Y, Lin C C. Analysis of radar echoes at different heights before and after precipitation enhancement. J Arid Meteor, 2018, 36(4): 644-651. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201804014.htm
|
[16] |
Cui D, Huang Y B, Xiao H, et al. Application of Doppler-radar data in the effect evaluation of artificial precipitation enhancement in Hainan Province. Trans Atmos Sci, 2012, 35(1): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201201009.htm
|
[17] |
Wang Y L, Wang J. Discussion on random experiment method of ground precipitation enhancement operation. J Arid Meteor, 2015, 33(5): 756-760. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201505006.htm
|
[18] |
Zhou Y L, Yao Z Y. Weather condition analysis and radar echo evaluation of precipitation enhancement operation for a stratiform mixed clouds. Meteor Environ Sci, 2017, 40(1): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX201701004.htm
|
[19] |
Tang R M, Xiang Y C, Ye J Y, et al. Application of data observed by several instruments in effective verification of artificial precipitation enhancement. Meteor Mon, 2009, 35(8): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200908007.htm
|
[20] |
Hu W, Shen Y Y, Zeng G P. Study on artificial precipitation enhancement technology of convective clouds in summer in southern China. J Appl Meteor Sci, 2005, 16(3): 413-416. http://qikan.camscma.cn/article/id/20050351
|
[21] |
Huang Y B, Mao Z Y, Xing F H, et al. Randomized effectiveness evaluation of artificially catalyzing heating-bottom cumulus in mountainous western Hainan Island. Meteor Sci Technol, 2019, 47(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201903016.htm
|
[22] |
Jia S, Yao Z Y. Case study on the convective clouds seeding effects in Yangtze-Huaihe Region. Meteor Mon, 2016, 42(2): 238-245. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201602012.htm
|
[23] |
Jia S. Technical Methods Study and Cases Analysis on the Testing of Convective Clouds Seeding Effects in Yangtze-Huaihe Region. Beijing: Chinese Academy of Meteorological Sciences, 2015.
|
[24] |
Zha S J, Zhang H J, Li X X, et al. Numerical simulation of precipitation processes during the opening ceremony of the Nanjing 2014 Youth Olympic Games. Chinese J Atmos Sci, 2020, 44(6): 1258-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202006008.htm
|
[25] |
He H, Jin H, Li H Y, et al. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games. Clim Environ Res, 2012, 17(1): 46-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201201007.htm
|
[26] |
Liu W G, Tao Y, Zhou Y Q. Numerical simulation of the macro and micro physical responses of stratiform cloud seeding. Chinese J Atmos Sci, 2021, 45(1): 37-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101003.htm
|
[27] |
Yue Z G, Yu X, Liu G H, et al. . Effect evaluation of an operational precipitation enhancement in cold clouds by aircraf. Acta Meteor Sinica, 2021, 79(5): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202105011.htm
|
[28] |
Zeng G P, Wu Z Y. Artificial Precipitation. Fuzhou: Fujian Science & Technology Publishing House, 1997.
|
[29] |
Zeng G P, Wu M L, Lin C C, et al. A comprehensive evaluation of the effect of artificial precipitation in Gutian Reservior area. J Appl Meteor, 1993, 4(2): 154-161. http://qikan.camscma.cn/article/id/19930229
|
[30] |
Zeng G P, Zhu D H, Wang Z L. An application study on the artificial rainfall over Gutian Reservoir region. Meteor Mon, 1997, 23(12): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX712.007.htm
|
[31] |
Lin X M, Zheng S Z, Huang W J, et al. The influence of seeding operation on the raindrop spectrum at the worksite. J Nanjing Inst Meteor, 1988, 11(3): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198803011.htm
|
[32] |
Lin C C, Yao Z Y, Lin W, et al. Analysis on cloud echoes characteristics and operational conditions of precipitation enhancement in Gutian of Fujian. Trans Atmos Sci, 2017, 40(1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201701015.htm
|
[33] |
Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi: 10.11898/1001-7313.20220403
|
[34] |
Wang J, Wang W Q, Wang H, et al. Hydrometeor particle characteristics during a late summer hailstorm in northern Shandong. J Appl Meteor Sci, 2021, 32(3): 370-384. doi: 10.11898/1001-7313.20210309
|
[35] |
Yuter S E, Kingsmill D E, Nance L B, et al. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J Appl Meteor Climatol, 2006, 45(10): 1450-1464.
|
[36] |
Friedrich K, Kalina E A, Masters F J, et al. Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2. Mon Wea Rev, 2013, 141(4): 1182-1203.
|
[37] |
Jia X C, Liu Y G, Ding D P, et al. Combining disdrometer, microscopic photography, and cloud radar to study distributions of hydrometeor types, size and fall velocity. Atmos Res, 2019, 228: 176-185.
|
[38] |
Lin C C, Gao B Y. Statistical analysis of radar echo parameters for the appraisement of rain-making experiments over Gutian area, Fujian Province. J Nanjing Inst Meteor, 1987, 10(3): 355-360. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX198703010.htm
|
[39] |
Zeng G P, Fang S Z, Xiao F. The total analysis of the effect of artificial rainfall in Gutian Reservoir area, Fujian(1975-1986). Chinese J Atmos Sci, 1991, 15(4): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199104010.htm
|
[40] |
Kumjian M R, Ryzhkov A V. The impact of size sorting on the polarimetric radar variables. J Atmos Sci, 2012, 69(6): 2042-2060.
|
[41] |
He Q F, Lin W, Zhang S S, et al. Dual polarization parameters and precipitation particle spectrum characteristics of a spring hail event in southwestern Fujian. Meteor Mon, 2022, 48(7): 856-867. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202207004.htm
|
[42] |
Bringi V N, Chandrasekar V(Li C, Zhang Y, Trans). Polarimetric Doppler Weather Radar: Principles and Applications. Beijing: China Meteorological Press, 2010: 263-349.
|
[43] |
Kumjian M R, Mishra S, Giangrande S E, et al. Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J Geophys Res Atmos, 2016, 121(7): 3584-3607.
|
[44] |
Sun Y, Ren G, Sun H P, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77. doi: 10.11898/1001-7313.20230106
|
[45] |
Lin W, Zhang S S, Luo C R, et al. Observational analysis of different intensity sever convective clouds by S-band dual-polarization radar. Meteor Mon, 2020, 46(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202001006.htm
|
[46] |
Kumjian M R, Ryzhkov A V, Melnikov V M, et al. Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon Wea Rev, 2010, 138(10): 3762-3786.
|
[47] |
Loney M L, Zrnić D S, Straka J M, et al. Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteor, 2002, 41(12): 1179-1194.
|