建筑物水平距离/m | 闪电击中地面概率/% | 闪电击中矮建筑物/% | |||
情形1 | 情形2 | 情形3 | 情形4 | ||
400 | 15.0 | 22.0 | 22.5 | 40.5 | |
500 | 18.8 | 24.0 | 19.0 | 38.2 | |
600 | 26.0 | 11.2 | 11.5 | 51.3 |
Citation: | Wu Meng, Tan Yongbo, Lin Yuhe, et al. Three-dimensional numerical simulation of the protective effect of tall building on short building. J Appl Meteor Sci, 2023, 34(6): 749-758. DOI: 10.11898/1001-7313.20230610. |
Table 1 Comparison of negative ground flash lightning strike for the same initial position
建筑物水平距离/m | 闪电击中地面概率/% | 闪电击中矮建筑物/% | |||
情形1 | 情形2 | 情形3 | 情形4 | ||
400 | 15.0 | 22.0 | 22.5 | 40.5 | |
500 | 18.8 | 24.0 | 19.0 | 38.2 | |
600 | 26.0 | 11.2 | 11.5 | 51.3 |
[1] |
Guo X F, Tan Y B, Guo F X, et al. Numerical simulation of effects of building tip on atmospheric electric field distortion. J Appl Meteor Sci, 2013, 24(2): 189-196. http://qikan.camscma.cn/article/id/20130207
|
[2] |
Jiang R J, Lyu W T, Wu B, et al. Simulation of cloud-to-ground lightning strikes to structures based on an improved stochastic lightning model. J Atmos Sol Terr Phys, 2020, 203. DOI: 10.1016/j.jastp.2020.105274.
|
[3] |
Jiang R J. Observation and Simulation of CG Lightning Activity Characteristics in the Regions with Tall Structures. Beijing: Chinese Academy of Meteorological Sciences, 2021.
|
[4] |
Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509
|
[5] |
Tan Y B, Chen Z L, Zhang D D, et al. Simulation on the stroke protection distance of tall buildings to surrounding buildings. J Appl Meteor Sci, 2016, 27(4): 498-505. doi: 10.11898/1001-7313.20160413
|
[6] |
Wu S S. Characteristic Analysis and Simulation of Downward Cloud-to-ground Lightning Flashes Around the Canton Tower. Beijing: Chinese Academy of Meteorological Sciences, 2019.
|
[7] |
Gao L, Ling C. Problems encountered in calculating equivalent collection areas of structures. Meteor Sci Technol, 2014, 42(6): 1126-1130. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201406030.htm
|
[8] |
Shi Y J, Zhao J, Chen R J. Study on the application of electro-geometric model in calculating the position factor. Hubei Agric Sci, 2019, 58(13): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201913013.htm
|
[9] |
IEC. Protection against Lightning. Part 2: Risk Management. 2006.
|
[10] |
National Standard of the People's Republic of China, GB50057-2010. Design Code for Protection of Structures Against Lightning. Beijing, 2010: 8-12.
|
[11] |
Ru H B, Ma J F, Feng Z W, et al. Method for calculating equivalent area of a building with same lightning stroke frequency. Meteor Sci Technol, 2013, 41(1): 191-195. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201301035.htm
|
[12] |
Gao P L, Shi D D, Wu T, et al. Characteristics of the preliminary breakdown in inverted-polarity intracloud lightning flashes. J Appl Meteor Sci, 2023, 34(3): 324-335. doi: 10.11898/1001-7313.20230306
|
[13] |
Guan Y N, Lü W T, Qi Q, et al. Difference between 2D and 3D development characteristics of an upward lightning leader. J Appl Meteor Sci, 2023, 34(5): 598-607. doi: 10.11898/1001-7313.20230508
|
[14] |
Hussein A, Jan S, Todorovski V, et al. Influence of the CN Tower on the Lightning Environment in its Vicinity//Proceedings of the International Lightning Detection Conference(ILDC). 2010: 1-19.
|
[15] |
Birkl J, Diendorfer G, Thern S, et al. Initial Investigation of Influence of Wind Farms to Lightning Events. 2016 33rd International Conference on Lightning Protection(ICLP). Estoril, Portugal. IEEE, 2016: 1-7.
|
[16] |
Zhang C X, Lu W T, Chen L W, et al. Influence of the Canton Tower on the cloud-to-ground lightning in its vicinity. J Geophys Res Atmos, 2017, 122(11): 5943-5954. doi: 10.1002/2016JD026229
|
[17] |
Wu S S, Lü W T, Qi Q, et al. Characteristics of downward cloud-to-ground lightning flashes around Canton Tower based on optical observations. J Appl Meteor Sci, 2019, 30(2): 203-210. doi: 10.11898/1001-7313.20190207
|
[18] |
Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi: 10.11898/1001-7313.20230410
|
[19] |
Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308
|
[20] |
Zhang Y, Lü W T, Chen L W, et al. Evaluation of GHMLLS performance characteristics based on observations of artificially triggered lightning. J Appl Meteor Sci, 2022, 33(3): 329-340. doi: 10.11898/1001-7313.20220307
|
[21] |
Yu J H, Tan Y B, Zheng T X, et al. A three-dimensional model establishment of multiple connecting leaders initiated from tall structures. J Appl Meteor Sci, 2020, 31(6): 740-748. doi: 10.11898/1001-7313.20200609
|
[22] |
Lin Y H, Tan Y B, Yu J H, et al. Improvement of the three-dimensional stochastic cloud-to-ground lightning model and numerical simulation of multiple upward leaders. Acta Meteor Sinica, 2022, 80(6): 999-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202206011.htm
|
[23] |
Lalande P, Mazur V. A physical model of branching in upward leaders. Journal AerospaceLab, 2012(5): 1-7.
|
[24] |
Tan Y B, Zhang X, Xiang C Y, et al. Three-dimensional numerical simulation of side flash on buildings. J Appl Meteor Sci, 2017, 28(2): 227-236. doi: 10.11898/1001-7313.20170210
|
[25] |
Ren X Y, Zhang Y J, Lü W T, et al. Establishment and application of random lightning leader model. J Appl Meteor Sci, 2011, 22(2): 194-202. http://qikan.camscma.cn/article/id/20110208
|
[26] |
Tan Y B, Zheng T X, Shi Z. Improved lightning model: Application to discuss the characteristics of upward lightning. Atmos Res, 2019, 217: 63-72.
|
[27] |
Lei Y N, Tan Y B, Yu J H, et al. Numerical simulation on multiple upward leader attachment process of tall and low buildings. J Appl Meteor Sci, 2022, 33(1): 80-91. doi: 10.11898/1001-7313.20220107
|
[28] |
Rakov V A, Uman M A. Lightning: Physics and Effects. Cambridge: Cambridge University Press, 2003.
|
[29] |
Becerra M, Cooray V. On the velocity of positive connecting leaders associated with negative downward lightning leaders. Geophys Res Lett, 2008, 35(2), L02801. DOI: 10.1029/2007GL032506.
|
[30] |
Helsdon J H Jr, Wu G, Farley R D. An intracloud lightning parameterization scheme for a storm electrification model. J Geophys Res, 1992, 97(D5): 5865-5884.
|
[31] |
Tan Y B, Tao S C, Zhu B Y. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning. Geophys Res Lett, 2006, 33(9). DOI: 10.1029/2005GL025523.
|
[32] |
Lu W T, Chen L W, Zhang Y, et al. Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou. J Geophys Res, 2012, 117, D19211. DOI: 10.1029/2012JD-18035.
|
[33] |
Saba M M F, Schumann C, Warner T A, et al. Upward lightning flashes characteristics from high-speed videos. J Geophys Res Atmos, 2016, 121(14): 8493-8505.
|
[34] |
Warner T A. Observations of simultaneous upward lightning leaders from multiple tall structures. Atmos Res, 2012, 117: 45-54.
|
[35] |
MacGorman D R, Straka J M, Ziegler C L. A lightning parameterization for numerical cloud models. J Appl Meteor, 2001, 40(3): 459-478.
|
[36] |
Mansell E R, MacGorman D R, Ziegler C L, et al. Simulated three-dimensional branched lightning in a numerical thunderstorm model. J Geophys Res, 2002, 107(D9): ACL 2-1-ACL 2-12.
|
[37] |
Biagi C J, Uman M A, Gopalakrishnan J, et al. Determination of the electric field intensity and space charge density versus height prior to triggered lightning. J Geophys Res, 2011, 116(D15): D15201.
|
[38] |
Chauzy S, Médale J C, Prieur S, et al. Multilevel measurement of the electric field underneath a thundercloud: 1. A new system and the associated data processing. J Geophys Res, 1991, 96(D12): 22319-22326.
|
[39] |
Tan Y B, Zhou B W, Guo X F, et al. A numerical simulation of the effects of building height on single upward lightning trigger and propagation. Acta Meteor Sinica, 2015, 73(3): 546-556. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201503011.htm
|
[40] |
Tan Y B, Shi Z, Wang N N, et al. Numerical simulation of the effects of randomness and characteristics of electrical environment on ground strike sites of cloud-to-ground lightning. Chinese J Geophys, 2012, 55(11): 3534-3541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201211004.htm
|
[41] |
Lyu W T, Zhang Y, Chen L, et al. Observation and Preliminary Analysis on the Attachment Process of Lightning Flashes Striking on High Structures. Paper Presented at Asia-pacific International Symposium on Electromagnetic Compatibility. IEEE, 2010.
|
[42] |
Warner T A. Upward Leader Development from Tall Towers in Response to Downward Stepped Leaders. Paper Presented at 30th International Conference on Lightning Protection(ICLP). IEEE, 2010: 1-4.
|
[43] |
Hussein A M, Milewski M, Janischewskyj W, et al. Characteristics of lightning flashes striking the CN Tower below its tip. J Electrost, 2007, 65(5/6): 307-315.
|
[44] |
Cummins K L, Krider E P, Olbinski M, et al. A case study of lightning attachment to flat ground showing multiple unconnected upward leaders. Atmos Res, 2018, 202: 169-174.
|
[45] |
Becerra M, Cooray V, Hartono Z A. Identification of lightning vulnerability points on complex grounded structures. J Electrost, 2007, 65(9): 562-570.
|
[46] |
Qie X S, Zhang Q L, Yuan T. Lightning Physics. Beijing: Science Press, 2013.
|
[47] |
D'Alessandro F. The use of 'field intensification factors' in calculations for lightning protection of structures. J Electrost, 2003, 58(1/2): 17-43.
|
[48] |
Zhang X. A Model Study on Three Dimensional Numerical of Side Flash on Buildings. Nanjing: Nanjing University of Information Science & Technology, 2017.
|