Li Meixuan, Huo Zhiguo, Kong Rui, et al. Indicator construction of spring low-temperature disaster affecting winter wheat of Huang-Huai-Hai based on Meta-analysis. J Appl Meteor Sci, 2024, 35(1): 45-56. DOI:  10.11898/1001-7313.20240104.
Citation: Li Meixuan, Huo Zhiguo, Kong Rui, et al. Indicator construction of spring low-temperature disaster affecting winter wheat of Huang-Huai-Hai based on Meta-analysis. J Appl Meteor Sci, 2024, 35(1): 45-56. DOI:  10.11898/1001-7313.20240104.

Indicator Construction of Spring Low-temperature Disaster Affecting Winter Wheat of Huang-Huai-Hai Based on Meta-analysis

DOI: 10.11898/1001-7313.20240104
  • Received Date: 2023-08-22
  • Rev Recd Date: 2023-11-27
  • Publish Date: 2024-01-31
  • The low temperature disaster in spring is one of the main agro-meteorological disasters affecting the yield and quality of winter wheat by affecting the development process and physiological function, resulting in yield reduction. In order to clarify the quantitative relationship between spring low temperature stress and winter wheat yield and its components in Huang-Huai-Hai Region, an indicator is constructed based on yield reduction rate. Based on 1924 sets of experimental data and control data in 34 retrieved literatures, effects of low temperature stress on wheat yield and its components at green-up stage, jointing stage, booting stage and heading-flowering stage are analyzed by Meta-analysis. Using the minimum temperature and accumulated cold of the process as identification factors, the critical thresholds of 0, 10% and 30% of yield reduction rate are determined by using the Youden's Index to establish and verify the low temperature disaster grade indicator. Results show that the yield and its components of winter wheat are jointly affected by the intensity and duration of low temperature to different extent in different developmental stages. The yield and all its components decrease significantly under low temperature stress, and the sensitivity of panicle number per plant and grain number per panicle to low temperature stress is greater than that of thousand kernel weight. The low temperature disaster grade indicators are constructed according to the yield reduction rate of (0, 10%], (10%, 30%], (30%, 100%]. Taking the minimum temperature (unit: ℃) of the process as identification factor, ranges for low temperature disaster grade (Ⅰ, Ⅱ, Ⅲ) during the green-up stage are [-5.0, -2.0), [-8.5, -5.0), <-8.5; during the jointing period, they are [-1.0, 3.0), [-2.5, -1.0), <-2.5; during the booting stage, they are [1.1, 5.1), [-3.0, 1.1), <-3.0. With the accumulated cold (unit: ℃·h) of the process as identification factor: Indicators during the green-up stage are [-216.1, -72.0), [-360.0, -216.1), <-360.0; during the jointing stage, they are [-41.0, -1.2), [-66.0, -41.0), <-66.0; during the booting stage, they are [-101.6, -16.8), [-169.3, -101.6), <-169.3; during the heading to flowering period, they are [-38.5, -19.6), [-93.8, -38.5), <-93.8. The accuracy of the indicator constructed with process accumulated cold volume is higher than that of process minimum temperature in all growth stages, indicating that the identification factor (accumulated cold of the process) based on the comprehensive influence of low temperature intensity and duration of the process could better characterize the severity of winter wheat suffering from low temperature disaster.
  • Fig. 1  Effect of minimum temperature stress on winter wheat yield and its components

    Table  1  Information of experimental sites and varieties in selected literatures

    参考文献 试验地址及试验年份 供试品种
    [18] 河南农业大学科教示范园区,2008/2009 百农矮抗58、豫麦49-198、偃展4110等
    [19] 山东农业大学试验田,2009/2010 济麦19、济麦20、济麦21、济麦22等
    [20] 北京市农林科学院,2012 京9843
    [8] 扬州大学农学院盆栽场,2009 扬麦16
    [21] 周口市农科院试验田,2012 45种黄淮麦区主要推广品种和苗头品系
    [22] 山东济宁市农业科学研究院 济麦22、济南17、鲁原502、周麦18等
    [23] 商丘市农林科学院试验中心 周麦22
    [24] 河南省郑州市农业气象试验站,2014/2015 郑麦366、豫麦34、偃展4110、郑麦9023
    [25] 河南农业大学科教示范园区,2015 郑麦366、郑麦7698等12个供试品种
    [5] 扬州大学江苏省作物遗传生理实验室,2014/2015 扬麦16、徐麦30
    [26] 扬州大学江苏省作物遗传生理实验室,2011 扬麦16、徐麦30
    [27] 河南省农业科学院 周麦18、众麦1号
    [9] 江苏省如皋市国家信息农业工程技术中心试验基地,2014/2015 扬麦16、徐麦30
    [28] 江苏省如皋市国家信息农业工程技术中心试验基地,2015/2016 扬麦16、徐麦30
    [29] 河南师范大学小麦试验田,2016 周麦18、良星99、济麦22等11个供试品种
    [30] 扬州大学江苏省作物遗传生理实验室,2016/2017 扬麦16、徐麦30
    [31] 山东泰安市农业科学研究院试验基地,2013/2014 泰山6426、泰山4033、济麦22
    [32] 安徽农业大学校内试验基地农萃园,2016/2017 扬麦18、烟农19
    [33] 河南省新乡市河南科技学院试验田,2018 矮抗58、郑麦366
    [34] 漯河市农业科学院试验基地,2018 漯麦6010
    [35] 安徽科技学院种植园(安徽凤阳),2019 宁麦13、华成3366
    [36] 扬州大学江苏省作物遗传生理实验室,2019 扬麦23、徐麦33
    [37] 保定市农业科学院徐水试验基地,2020 保麦10号、河农130、远大1号等
    [38] 河南省漯河市农业科学院试验田网室,2019 漯麦163、漯麦6010、偃展4110等
    [39] 扬州大学江苏省作物遗传生理实验室,2016/2017 扬麦16、徐麦30
    [40] 河南省商丘市农林科学院小麦试验基地,2019/2020 偃展4110、兰考198、郑麦366等
    [41] 河南省现代农业研究开发基地,2018/2019 郑麦366、新麦26
    [42] 安徽农业大学农萃园基地,2020 烟农19、新麦26
    [43] 安徽农业大学农萃园,2020 烟农19、新麦26
    [44] 安徽科技学院种植科技园,2019 华成3366、扬麦13、生选6号、
    扬麦19、安农1589、烟农5185、宁麦13
    [45] 河南省漯河市农业科学院试验田网室,2021 漯麦47、漯麦906、周麦18等
    [46] 扬州大学江苏省作物遗传生理实验室,2017 扬麦16、徐麦30
    [47] 扬州大学江苏省作物遗传生理实验室盆钵试验场,2020/2021 宁麦13、镇麦12
    [48] 安徽农业大学校内试验基地农萃园,2019 烟农19、皖麦52
    DownLoad: Download CSV

    Table  2  Number of damage-free and damage samples

    发育期 无灾样本 受灾样本
    恒温样本 变温样本 合计 恒温样本 变温样本 合计
    返青期 0 15 15 21 0 21
    拔节期 4 112 116 275 56 331
    孕穗期 10 34 44 47 53 100
    抽穗-开花期 0 29 29 13 36 49
    DownLoad: Download CSV

    Table  3  Critical threshold of spring low temperature disaster in different growth stages of winter wheat

    发育期 减产率/% 测试阈值范围/℃ 最佳阈值范围/℃ 最佳阈值/℃ 约登指数 AUC 判识因子性能
    0 [-6.0, 1.0] [-3.9, 0.0] -2.0 1.00 1.00 优秀
    返青期 10 [-6.0, -4.0] [-5.9, -4.0] -5.0 0.88 0.94 优秀
    30 [-6.0, -4.0] [-5.9, -4.0] -5.0 0.93 0.97 优秀
    0 [-10.0, 8.0] [2.1, 4.0] 3.0 0.99 1.00 优秀
    拔节期 10 [-10.0, 5.0] [-1.9, 0.0] -1.0 0.87 0.94 优秀
    30 [-10.0, 5.0] [-2.9, -2.0] -2.5 0.51 0.78 良好
    0 [-7.0, 15.0] [4.1, 6.0] 5.1 1.00 1.00 优秀
    孕穗期 10 [-7.0, 4.0] [0.1, 2.0] 1.1 0.58 0.81 良好
    30 [-7.0, 4.0] [-3.9, -2.0] -3.0 0.44 0.74 良好
    0 [2.0, 20.0] [6.0, 7.9] 7.0 0.70 0.94 优秀
    抽穗-开花期 10 [2.0, 8.0] [4.0, 5.9] 5.0 0.38 0.75 良好
    30 [2.0, 8.0] [2.1, 3.9] 3.0 0.50 0.69 一般
    DownLoad: Download CSV

    Table  4  Classification thresholds of different relative change rates of yield components of winter wheat under low temperature stress in green-up stage

    产量构成因素 变化率/% 测试阈值范围/℃ 最佳阈值范围/℃ 最佳阈值/℃ 约登指数 AUC 判识因子性能
    10 [-6.0, -4.0] [-5.9, -4.0] -5.0 0.79 0.89 良好
    20 [-6.0, -4.0] [-5.9, -4.0] -5.0 0.88 0.94 优秀
    单株穗数 30 [-6.0, -4.0] [-5.9, -4.0] -5.0 0.86 0.93 优秀
    40 [-6.0, -4.0] [-5.9, -4.0] -5.0 0.75 0.88 良好
    50 [-6.0, -4.0] [-5.9, -4.0] -5.0 0.43 0.71 良好
    10 [-10.0, -3.0] [-5.9, -4.0] -5.0 0.57 0.75 良好
    20 [-10.0, -3.0] [-5.9, -4.0] -5.0 0.73 0.82 良好
    穗粒数 30 [-10.0, -3.0] [-5.9, -4.0] -5.0 0.73 0.84 良好
    40 [-10.0, -3.0] [-5.9, -4.0] -5.0 0.64 0.89 良好
    50 [-10.0, -3.0] [-9.9, -7.0] -8.5 1.00 1.00 优秀
    DownLoad: Download CSV

    Table  5  Grade indicator construction and validation of spring low temperature disaster process based on minimum temperature in different growth stages of winter wheat

    发育期 等级指标/℃ 验证结果
    完全符合样本量 基本符合样本量 不符合样本量
    返青期 [-5.0, -2.0) [-8.5, -5.0) <-8.5 5 1 1
    拔节期 [-1.0, 3.0) [-2.5, -1.0) <-2.5 63 12 14
    孕穗期 [1.1, 5.1) [-3.0, 1.1) <-3.0 20 7 1
    抽穗-开花期 [5.0, 7.0) [3.0, 5.0) <3.0 9 4 1
    DownLoad: Download CSV

    Table  6  Critical threshold of spring low temperature disaster in different growth stages of winter wheat

    发育期 减产率/% 测试阈值范围/(℃·h) 最佳阈值范围/(℃·h) 最佳阈值/(℃·h) 约登指数 AUC 性能
    0 [-432.0, 0.0] [-144.0, -0.1] -72.0 1.00 1.00 优秀
    返青期 10 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.47 0.73 良好
    30 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.50 0.75 良好
    0 [-768.0, 0.0] [-2.4, -0.1] -1.2 1.00 1.00 优秀
    拔节期 10 [-768, -2.4] [-42.0, -40.1] -41.0 0.73 0.83 良好
    30 [-768, -2.4] [-72.0, -60.1] -66.0 0.38 0.72 良好
    0 [-608.4, 0.0] [-30.0, -3.7] -16.8 1.00 1.00 优秀
    孕穗期 10 [-608.4, -30.0] [-106.0, -97.3] -101.6 0.83 0.87 良好
    30 [-608.4, -30.0] [-170.6, -168.1] -169.3 0.65 0.87 良好
    0 [-504.0, 0.0] [-36.0, -3.3] -19.6 0.85 0.98 优秀
    抽穗-开花期 10 [-504.0, -1.8] [-75.0, -1.9] -38.5 0.51 0.77 良好
    30 [-504.0, -1.8] [-112.5, -75.1] -93.8 0.46 0.83 良好
    DownLoad: Download CSV

    Table  7  Classification thresholds of different relative change rates of yield components of winter wheat under low temperature stress in green-up stage

    产量构成因素 变化率/% 测试阈值范围/(℃·h) 最佳阈值范围/(℃·h) 最佳阈值/(℃·h) 约登指数 AUC 判识因子性能
    10 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.53 0.76 良好
    20 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.59 0.79 良好
    30 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.71 0.86 良好
    单株穗数 40 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.77 0.88 良好
    50 [-432.0, -144.0] [-431.9, -288.1] -360.0 0.71 0.89 良好
    60 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.61 0.85 良好
    70 [-432.0, -144.0] [-431.9, -288.1] -360.0 0.80 0.90 优秀
    10 [-432.0, -24.0] [-288.0, -144.1] -216.1 0.43 0.65 一般
    20 [-432.0, -24.0] [-288.0, -144.1] -216.1 0.50 0.68 一般
    穗粒数 30 [-432.0, -24.0] [-288, -144.1] -216.1 0.59 0.71 良好
    40 [-432.0, -24.0] [-288.0, -144.1] -216.1 0.66 0.81 良好
    50 [-432.0, -24.0] [-288.0, -144.1] -216.1 0.56 0.81 良好
    千粒重 10 [-432.0, -144.0] [-288.0, -144.1] -216.1 0.10 0.50 无效
    20 [-432.0, -144.0] [-431.9, -288.1] -360.0 0.57 0.84 良好
    DownLoad: Download CSV

    Table  8  Grade indicator construction and validation of spring low temperature disaster process based on accumulated cooling in different growth stages of winter wheat

    发育期 等级指标/(℃·h) 验证结果
    完全符合样本量 基本符合样本量 不符合样本量
    返青期 [-216.1, -72.0) [-360.0, -216.1) <-360.0 6 1 0
    拔节期 [-41.0, -1.2) [-66.0, -41.0) <-66.0 80 7 2
    孕穗期 [-101.6, -16.8) [-169.3, -101.6) <-169.3 25 3 0
    抽穗-开花期 [-38.5, -19.6) [-93.8, -38.5) <-93.8 11 3 0
    DownLoad: Download CSV
  • [1]
    Luo X L, Zhang Y, Sun Z F, et al. Spatial and temporal distribution of winter wheat frost injury in Huanghuai Plain. Chinese Agric Sci Bull, 2011, 27(18): 45-50.
    [2]
    Zhong X L, Wang D L, Li Y Z, et al. Risk assessment of frost damage in wheat. J Appl Meteor Sci, 2007, 18(1): 102-107. doi:  10.3969/j.issn.1001-7313.2007.01.014
    [3]
    Song Y L, Zhou G S, Guo J P, et al. Influences of global warming on yield structure and quality of winter wheat Xumai 33. J Appl Meteor Sci, 2023, 34(5): 552-561. doi:  10.11898/1001-7313.20230504
    [4]
    Ren S X, Zhao H R, Zhou G S, et al. Response of winter wheat Tanmai 98 to sowing date adjustments. J Appl Meteor Sci, 2023, 34(3): 362-372. doi:  10.11898/1001-7313.20230309
    [5]
    Liu L W. Effects of Low Temperature at Anther Connective Formation, Meiosis and Anthesis Stages on Grain Yield in Wheat and Remedial Techniques. Yangzhou: Yangzhou University, 2016.
    [6]
    Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi:  10.11898/1001-7313.20220406
    [7]
    Guo J P. Advances in impacts of climate change on agricultural production in China. J Appl Meteor Sci, 2015, 26(1): 1-11. doi:  10.11898/1001-7313.20150101
    [8]
    Chen S S, Li C Y, Yang J, et al. Effect of low temperature at jointing stage on photosynthetic characteristics and yield in wheat cultivar Yangmai 16. J Yangzhou Univ(Agric Life Sci Ed), 2014, 35(3): 59-64.
    [9]
    Ji H T. Effects of Low Temperature Stress at Jointing and Booting on Yield Formation in Wheat. Nanjing: Nanjing Agricultural University, 2017.
    [10]
    Peng S L, Zheng F Y. Meta-analysis: A graet revolution in review. Chinese J Ecol, 1999, 18(6): 65-70.
    [11]
    Mao H D, Huo Z G, Zhang L, et al. Indicator construction and risk assessment of grape waterlogging in the Bohai Rim. J Appl Meteor Sci, 2022, 33(1): 92-103. doi:  10.11898/1001-7313.20220108
    [12]
    Li H N, Zhu L J, Li M Q, et al. Construction of soybean chilling damage indicator and its evolution characteristics in Northeast China. J Appl Meteor Sci, 2021, 32(4): 491-503. doi:  10.11898/1001-7313.20210410
    [13]
    Chen Y Y, Wang P J, Zhang Y D, et al. Comparison of drought recognition of spring maize in Northeast China based on 3 remote sensing indices. J Appl Meteor Sci, 2022, 33(4): 466-476. doi:  10.11898/1001-7313.20220407
    [14]
    Qu Z J, Zhou G S, Wei Q P. Meteorological disaster index and risk assessment of frost injury during apple florescence. J Appl Meteor Sci, 2016, 27(4): 385-395. doi:  10.11898/1001-7313.20160401
    [15]
    Yu L. Preliminary analysis of freezing injury index of winter wheat in Hebei Province. Chinese J Agrometeor, 1982, 3(4): 10-13.
    [16]
    Liu J, Zhang Z S, Zhang L R, et al. Climatic characteristics of disease by colletotrichum gloeosporioides penz on China wolfberry in Yinchuan. J Appl Meteor Sci, 2008, 19(3): 333-341. http://qikan.camscma.cn/article/id/20080355
    [17]
    Li H L, Wang J H, Zhang W M, et al. Freezing injury index of kiwifruit branches for main varieties under simulated low temperature. J Appl Meteor Sci, 2021, 32(5): 618-628. doi:  10.11898/1001-7313.20210509
    [18]
    Liu P X. Studies on Evaluation of Frost Resistance of Winter Wheat Varieties and the Correlative Physiological Characteristics. Zhengzhou: Henan Agricultural University, 2010.
    [19]
    Wang S G. Analysis on Wheat Freezing Resistance Based on the Responses of the Physiological Indices to Low Temperature Stress. Taian: Shandong Agricultural University, 2011.
    [20]
    Wang H F. Winter Wheat Freeze Injury Research Based on Multi-sources Remote Sensing Data. Hangzhou: Zhejiang University, 2013.
    [21]
    Gao Y, Tang J W, Yin G H, et al. Effect of different periods and frequency of late spring coldness on winter wheat yield related traits. J Triticeae Crops, 2015, 35(5): 687-692.
    [22]
    Chen G J, Chen M L, Wang F Y, et al. Influences of low temperature in connectivum period on wheat growth and development. Shandong Agric Sci, 2015, 47(2): 25-28.
    [23]
    Ren D C, Hu X, Chen D D, et al. Effects of different low temperature treatments on photosynthetic characteristics and yield traits of wheat. Chinese Agric Sci Bull, 2016, 32(21): 44-50.
    [24]
    Zhang X H. Effects of Frost Injury in Jointing Stages on Photosynthetic, Caducity Characteristics and Yield Structure of Four Winter Wheat Cultivars. Nanjing: Nanjing University of Information Science & Technology, 2016.
    [25]
    Sun M M, Wang Z Q, Gao X, et al. Cold tolerance evaluation of wheat varieties in Henan based on their physiological response to low temperature stress. J Triticeae Crops, 2016, 36(3): 316-324.
    [26]
    Li C Y, Xu W, Liu L W, et al. Effect of short-time low temperature from anther connective stage to anthesis on wheat yield and physiological characteristics. J Triticeae Crops, 2016, 36(1): 77-85.
    [27]
    Zhang L, Li G L, Zhang J Z, et al. Effects of low temperature stress on physiological characters and yield of two wheat varieties at jointing stage. J Henan Agric Sci, 2017, 46(11): 13-18.
    [28]
    Xia Y M. Effects of Double-stage Low Temperature Stress at Jointing and Booting on Development, Growth and Yield Formation in Wheat. Nanjing: Nanjing Agricultural University, 2017.
    [29]
    Zhang Y. Comparison for Cold Resistance of Different Wheat Cultivars in Huang-Huai-Hai Plain. Xinxiang: Henan Normal University, 2017.
    [30]
    Zhang Y X. Effects of Low Temperature in Spring on Wheat Yield and Defensive Remedy of Fertilize Nitrogen. Yangzhou: Yangzhou University, 2018.
    [31]
    Wang R X, Yan C S, Zhang X Y, et al. Effect of low temperature in spring on yield and photosynthetic characteristics of wheat. Acta Agron Sinica, 2018, 44(2): 288-296.
    [32]
    Mi L. Effect of Low Temperature Stress on Spike Development in Different Genotype Wheat at Booting Stage. Hefei: Anhui Agricultural University, 2018.
    [33]
    Zhang Z Y, Wang Z Y, Wang B, et al. Effects of low temperature treatment at spring spike differentiation stage on young ear fruiting and physiological characteristics of different wheat varieties. Acta Agric Boreali Sinica, 2019, 34(4): 130-139.
    [34]
    Guo C Q, Wang J, Zhang Z Y, et al. Study on yield and agronomic characters of Luomai 6010 under low temperature stress. J Shanxi Agric Sci, 2019, 47(2): 188-190.
    [35]
    Tan Z. Effects of Low Temperature at Elongation Stage on Flower Development and Grain Growth of Wheat and Response to Nitrogen Application. Chuzhou: Anhui Science and Technology University, 2020.
    [36]
    Gao Y. Physiological Responses and Yield Differences of Wheat Subjected to Low Temperature at Different Growth Stages in Spring. Yangzhou: Yangzhou University, 2020.
    [37]
    Li X J, Liu L J, Xu H N, et al. Effects of low temperature stress at jointing stage on biological yield and grain yield of wheat under different water treatments. Bull Agric Sci Technol, 2021(7): 98-101.
    [38]
    Cao Y Y, Zhang H T, Guo C Q, et al. Physiological and biochemical reactions of different winter wheat varieties at jointing stage under low temperature and their grey correlation analysis. Shandong Agric Sci, 2021, 53(8): 37-42.
    [39]
    Gao Y, Zhang Y X, Ma Q, et al. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat. Acta Agron Sinica, 2021, 47(1): 104-115.
    [40]
    Wang Y Y. Effect of Spring Low Temperature on Wheat Physiology and Yield and Evaluation of Freezing Injury. Zhengzhou: Henan Agricultural University, 2021.
    [41]
    Yue J Q, Zhang S Y, Li X D, et al. Effect of low temperature stress on chlorophyll fluorescence parameters and yield of wheat. J Triticeae Crops, 2021, 41(1): 105-110.
    [42]
    Ke Y Y, Chen X, Zhang L L, et al. Effects of low temperature stress at anther connective stage on dry matter accumulation, translocation and distribution and grain yield of wheat. J Anhui Agric Univ, 2021, 48(5): 701-706.
    [43]
    Zhang L L. Effects of Low-temperature Stress on Upper Internode, Spike Morphology, and Yield per Spike of Wheat at the Anther Interval Phase. Hefei: Anhui Agricultural University, 2021.
    [44]
    Fu Y S, Tan Z, Li W Y. Effects of low temperature at jointing stage on grain yield and fluorescence parameters of flag leaves in wheat grain filling. Ecol Sci, 2022, 41(6): 33-40.
    [45]
    Cao Y Y, Ge C B, Qi S L, et al. Physiological response to low temperature stress and evaluation of cold resistance of different winter wheat varieties(lines) at jointing stage. Jiangsu Agric Sci, 2022, 50(17): 59-66.
    [46]
    Ma Q, Zhang Y X, Tao Y, et al. Effects of low temperature at different stages in spring on photosynthetic characteristics and grain weight formation of wheat. J Triticeae Crops, 2022, 42(2): 226-235.
    [47]
    Zhao K M. The Effects of Temporary High and Low Temperature after Anthesis on Yield and Quality Formation of Wheat. Yangzhou: Yangzhou University, 2022.
    [48]
    Yang L, Li Y, Wang J Q, et al. Effects of low temperature at booting stage on young ears development and yield of wheat. J Nucl Agric Sci, 2022, 36(12): 2490-2500.
    [49]
    Zheng D X. Studies on Indices of Freezing Injury and Changes of Possible Planting Boundaries for Different Winter-spring Wheat. Beijing: China Agricultural University, 2019.
    [50]
    Xu W, Yang J, Deng L L, et al. Effects of low temperature on grain yield of 'Yangmai 16', prevention and disaster relief measures. J Nucl Agric Sci, 2015, 29(2): 375-382.
    [51]
    Feng L P, Gao L Z, Jin Z Q, et al. Studies on the simulation model for wheat phenology. Acta Agron Sinica, 1997, 23(4): 418-424.
    [52]
    Gong F J. Agrometeorology. Beijing: Agriculture Press, 1993.
    [53]
    Chinese Meteorological Administration. Grade of Cold Damage for Banana and Litchi(QX/T 80-2007). 2007.
  • 加载中
  • -->

Catalog

    Figures(1)  / Tables(8)

    Article views (413) PDF downloads(947) Cited by()
    • Received : 2023-08-22
    • Accepted : 2023-11-27
    • Published : 2024-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint