Xiong Guoyu, Zu Fan, Bao Yunxuan, et al. Expressway pavement temperature forecast based on LSTM and prior knowledge. J Appl Meteor Sci, 2024, 35(1): 68-79. DOI:  10.11898/1001-7313.20240106.
Citation: Xiong Guoyu, Zu Fan, Bao Yunxuan, et al. Expressway pavement temperature forecast based on LSTM and prior knowledge. J Appl Meteor Sci, 2024, 35(1): 68-79. DOI:  10.11898/1001-7313.20240106.

Expressway Pavement Temperature Forecast Based on LSTM and Prior Knowledge

DOI: 10.11898/1001-7313.20240106
  • Received Date: 2023-10-15
  • Rev Recd Date: 2023-11-27
  • Publish Date: 2024-01-31
  • The variation of road surface temperature along highways is a crucial indicator for traffic meteorological conditions and constitutes a significant focus in the research on meteorological disasters related to transportation. Accurate forecast of pavement temperature, timely issuance of pavement condition warnings, and alerting relevant personnel to take defensive measures are of paramount importance for ensuring the safety of people's lives and property. Observations from 4 expressway meteorological stations along Nanjing City Ring Expressway and the corresponding ERA5-land reanalysis data from 2019 to 2022 are analyzed. Utilizing feature engineering techniques that consider the daily and seasonal temperature variations as well as temperature trends, a long-short-term memory (LSTM) neural network model, incorporating prior knowledge, is established for multi-step pavement temperature forecasting at 10 min intervals for the next 3 hours. The models are validated under different scenarios including extreme high and low pavement temperature conditions. They are further transferred and applied to 5 additional meteorological stations to investigate the model universality. This approach addresses the challenge of pavement temperature forecasting for stations with limited historical data due to new construction or equipment maintenance. Results indicate that the incorporation of prior knowledge facilitates a more comprehensive consideration of environmental influences by maximizing the feature extraction capabilities of LSTM. All forecasting performance metrics of the model exhibit significant improvements, with the accuracy exceeding 85%. As the forecast lead time extends, the enhancement in various forecast metrics becomes more pronounced, reaching a maximum accuracy improvement of 36%. The model accurately predicts the occurrence time and extremities of extreme low temperatures, but it exhibits relatively weaker capabilities in forecasting extreme high temperatures, with approximately 1 h advance in occurrence time and an underestimation of about 4 ℃. Despite this generally lower forecasting efficacy, the model still provides valuable information. When applying models to forecast pavement temperatures at other meteorological stations, the accuracy exceeds 62%. The forecast performance is better for short lead times, with the accuracy surpassing 80%. The underlying surface type plays a crucial role in the selection of different models. The suburban station model performs relatively optimally for urban meteorological stations and suburban meteorological stations, while the rural station model performs relatively optimally for rural meteorological stations.
  • Fig. 1  Geographical location distribution of traffic meteorological stations along Nanjing Ring Expressway

    Fig. 2  Evaluation of forecasting performance using different schemes at 4 traffic meteorological stations

    Fig. 3  Forecasting performance and comparison of 1 h lead time for M9522 traffic meteorological station in 2022

    (a)Scheme 1, (b)Scheme 2, (c)Scheme 3, (d)Scheme 4, (e)Scheme 5, (f)normalized comparison of forecasting performance for each scheme

    Fig. 4  The same as in Fig. 3, but for 3 h lead time

    Fig. 5  Comparisons between observation and forecast of Scheme 5 for extreme low pavement temperature cases on 21 Feb 2022

    Fig. 6  Comparisons between observation and forecast of Scheme 5 for extreme high pavement temperature cases on 8 Aug 2022

    Table  1  Model scheme setting

    模型方案 交通气象站观测数据 物理机制相关变量 特征变量
    方案1
    方案2
    方案3
    方案4
    方案5
    DownLoad: Download CSV

    Table  2  Accuracy rate and threat score of Scheme 5 under low and high pavement temperature conditions

    路面状况 交通气象站 1 h时效 2 h时效 3 h时效
    准确率/% TS评分 准确率/% TS评分 准确率/% TS评分
    低温 M9518 100 0.64 99.77 0.63 99.77 0.60
    M9520 100 0.56 100 0.52 100 0.53
    M9522 100 0.53 98.41 0.49 94.42 0.42
    M9526 99.40 0.71 100 0.74 99.28 0.69
    高温 M9518 27.82 0.41 11.55 0.17 6.45 0.07
    M9520 58.10 0.56 25.05 0.28 13.75 0.16
    M9522 67.67 0.52 45.65 0.39 22.02 0.21
    M9526 51.27 0.62 43.79 0.51 28.74 0.41
    DownLoad: Download CSV

    Table  3  Evaluation of Scheme 5 in extreme high and extreme low pavement temperature cases

    个例 交通气象站 1 h时效 3 h时效
    准确率/% 平均绝对偏差/℃ 均方根误差/℃ 准确率/% 平均绝对偏差/℃ 均方根误差/℃
    极端低温 M9518 100 0.80 0.88 97.91 0.96 1.24
    M9520 100 0.53 0.71 100 0.94 1.18
    M9522 100 0.69 0.84 93.75 1.42 1.75
    M9526 97.92 0.77 1.08 92.36 1.11 1.50
    极端高温 M9518 69.44 2.27 2.95 53.47 4.19 5.64
    M9520 88.89 0.92 1.40 68.06 2.68 3.27
    M9522 90.27 1.01 1.50 67.36 2.97 3.72
    M9526 79.86 1.63 2.84 61.80 3.88 5.94
    DownLoad: Download CSV

    Table  4  Evaluation of model transfer application forecasting performance

    模型站 模型站类型 验证站 验证站类型 1 h时效 3 h时效
    准确率/% 平均绝对偏差/℃ 均方根误差/℃ 准确率/% 平均绝对偏差/℃ 均方根误差/℃
    M9521 城市 86.09 1.47 2.30 73.10 2.40 3.53
    M9126 城市 87.17 1.47 2.31 72.12 2.54 3.67
    M9518 城郊 M9293 城郊 80.18 1.86 2.92 67.95 2.88 4.23
    M9513 乡村 78.87 1.99 2.97 59.44 3.86 5.65
    M9516 乡村 80.39 1.93 2.93 59.95 3.80 5.62
    M9521 城市 88.20 1.43 2.05 70.22 2.60 3.75
    M9126 城市 87.35 1.49 2.18 68.28 2.83 4.06
    M9520 城郊 M9293 城郊 84.11 1.65 2.41 66.88 2.92 4.24
    M9513 乡村 83.78 1.65 2.71 62.80 3.37 5.01
    M9516 乡村 85.32 1.65 2.87 62.82 3.39 5.12
    M9521 城市 86.10 1.58 2.22 70.23 2.77 4.08
    M9126 城市 85.29 1.72 2.35 66.55 3.06 4.34
    M9522 城市 M9293 城郊 80.97 1.90 2.73 65.96 3.24 4.86
    M9513 乡村 81.92 1.81 2.82 57.21 4.01 6.03
    M9516 乡村 81.35 1.85 2.80 55.69 4.06 6.02
    M9521 城市 86.39 1.52 2.17 58.39 3.36 4.61
    M9126 城市 85.09 1.63 2.31 57.56 3.62 5.15
    M9526 乡村 M9293 城郊 81.69 1.79 2.68 64.73 3.12 4.51
    M9513 乡村 84.17 1.70 2.44 63.65 3.20 4.55
    M9516 乡村 84.18 1.75 2.48 62.16 3.12 4.38
    DownLoad: Download CSV
  • [1]
    Feng L, Wang X F, He X F, et al. Fine forecast of high road temperature along jiangsu highways based on INCA system and METRo model. J Appl Meteor Sci, 2017, 28(1): 109-118. doi:  10.11898/1001-7313.20170110
    [2]
    Chen J Q, Wang H, Xie P Y. Pavement temperature prediction: Theoretical models and critical affecting factors. Appl Therm Eng, 2019, 158: 113755. doi:  10.1016/j.applthermaleng.2019.113755
    [3]
    Chen S K, Saeed T U, Labi S. Impact of road-surface condition on rural highway safety: A multivariate random parameters negative binomial approach. Anal Meth Accid Res, 2017, 16: 75-89.
    [4]
    Adwan I, Milad A, Memon Z A, et al. Asphalt pavement temperature prediction models: A review. Appl Sci, 2021, 11(9): 3794. doi:  10.3390/app11093794
    [5]
    Barber E S. Calculation of maximum pavement temperatures from weather reports. Highw Res Board Bull, 1957, 168: 1-8.
    [6]
    Liu X M, Yu Y C, Lei G L, et al. Using radiant balance theory to calculate concrete road-surface temperature in summer. J Appl Meteor Sci, 2004, 15(5): 623-628. doi:  10.3969/j.issn.1001-7313.2004.05.012
    [7]
    Zhu C Y, Xie Z Q, Yan M L, et al. Study on the numerical prediction model of extreme temperature on speedway-surface. Sci Meteor Sinica, 2009, 29(5): 645-650.
    [8]
    Dempsey B J, Thompson M R. A heat transfer model for evaluating frost action and temperature-related effects in multilayered pavement systems. Highw Res Rec, 1970(342): 39-56.
    [9]
    Meng C L, Zhang C L. Development and verification of a numerical forecast model for road meteorological services. J Appl Meteor Sci, 2012, 23(4): 451-458. doi:  10.3969/j.issn.1001-7313.2012.04.008
    [10]
    Asefzadeh A, Hashemian L, Bayat A. Development of statistical temperature prediction models for a test road in Edmonton, Alberta, Canada. Int J Pavement Res Technol, 2017, 10(5): 369-382. doi:  10.1016/j.ijprt.2017.05.004
    [11]
    Dong T X, Bao Y X, Yuan C S, et al. Application of three statistical forecast models in early warning of low-temperature on road surface in Jiangsu and their comparison. Meteor Sci Technol, 2018, 46(4): 773-784.
    [12]
    Chandrappa A K, Biligiri K P. Development of pavement-surface temperature predictive models: Parametric approach. J Mater Civ Eng, 2016, 28(3): 04015143.1-04015143.12.
    [13]
    Wang K, Hao P W. Prediction model of temperature in different layers of asphalt pavement. J Chang'an Univ(Nat Sci Ed), 2017, 37(6): 24-30. doi:  10.3969/j.issn.1671-8879.2017.06.004
    [14]
    Tang J J, Guo Z Y. Pavement temperature short-impending prediction based on ARIMA in winter. J Tongji Univ(Nat Sci Ed), 2017, 45(12): 1824-1829.
    [15]
    Chapman L, Thornes J E. A geomatics-based road surface temperature prediction model. Sci Total Environ, 2006, 360(1/2/3): 68-80.
    [16]
    Thornes J E, Cavan G, Chapman L. XRWIS: The use of geomatics to predict winter road surface temperatures in Poland. Meteor Appl, 2005, 12(1): 83-90. doi:  10.1017/S135048270500157X
    [17]
    Shao J. Improving nowcasts of road surface temperature by a backpropagation neural network. Wea Forecasting, 1998, 13(1): 164-171. doi:  10.1175/1520-0434(1998)013<0164:INORST>2.0.CO;2
    [18]
    Abo-Hashema M A. Modeling Pavement Temperature Prediction Using Artificial Neural Networks Airfield and Highway Pavement 2013. Los Angeles, California, USA. Reston, VA: American Society of Civil Engineers, 2013: 490-505.
    [19]
    Xu B, Dan H C, Li L. Temperature prediction model of asphalt pavement in cold regions based on an improved BP neural network. Appl Therm Eng, 2017, 120: 568-580. doi:  10.1016/j.applthermaleng.2017.04.024
    [20]
    Lei J J, Wei H H, Li J. A genetic PSO-SVM hybrid algorithm for road icing forecast. J Huazhong Norm Univ(Nat Sci Ed), 2010, 44(3): 392-396.
    [21]
    Wang K X, Bao Y X, Zhu C Y, et al. Forecasts of road surface temperature in winter based on random forests regression. Meteor Mon, 2021, 47(1): 82-93.
    [22]
    Liu B, Shen L B, You H L, et al. Comparison of algorithms for road surface temperature prediction. Int J Crowd Sci, 2018, 2(3): 212-224. doi:  10.1108/IJCS-09-2018-0021
    [23]
    Karpatne A, Atluri G, Faghmous J H, et al. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng, 2017, 29(10): 2318-2331. doi:  10.1109/TKDE.2017.2720168
    [24]
    Tian H, Wu H, Zhao L N, et al. Characteristics and statistical model of road surface temperature on huning expressway. J Appl Meteor Sci, 2009, 20(6): 737-744. doi:  10.3969/j.issn.1001-7313.2009.06.012
    [25]
    Wu S, Wu D, Deng X J, et al. Characteristics of road surface temperature on freeway over Nanling hilly region. Meteor Sci Technol, 2006, 34(6): 783-787. doi:  10.3969/j.issn.1671-6345.2006.06.028
    [26]
    Jun C, Ban Y F, Li S N. Open access to earth land-cover map. Nature, 2014, 514(7523): 434.
    [27]
    Zhang K E, Cao C, Chu H R, et al. Increased heat risk in wet climate induced by urban humid heat. Nature, 2023, 617(7962): 738-742. doi:  10.1038/s41586-023-05911-1
    [28]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. doi:  10.1002/qj.3803
    [29]
    Muoz-Sabater J, Dutra E, Agustí-Panareda A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data, 2021, 13(9): 4349-4383.
    [30]
    Zhang X, Hao Y, Liang J, et al. Characteristics of road surface temperature of Shaanxi expressway and its prediction model. J Arid Meteor, 2019, 37(6): 1028-1034.
    [31]
    Li H. Study of Statistical Methods Based on Machine Learning Algorithms for Air Quality Forecasting in Lanzhou. Lanzhou: Lanzhou University, 2017.
    [32]
    Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780.
    [33]
    Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109
    [34]
    Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi:  10.11898/1001-7313.20220304
    [35]
    Kong W, Che Q, Zhao H R, et al. Short-term prediction of coal stock in power plant based on singular spectrum analysis and long short-term memory neural network. Inf Control, 2020, 49(6): 742-751.
    [36]
    Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. doi:  10.11898/1001-7313.20230404
    [37]
    Liu B, Yan S, You H, et al. An Ensembled RBF Extreme Learning Machine to Forecast Road Surface Temperature//2017 16th IEEE International Conference on Machine Learning and Applications(ICMLA), 2017: 977-980.
    [38]
    Wang Y H, Bica B. Precipitation extrapolation nowcasting in Being-Tianjin-Hebei under different weather backgrounds. J Appl Meteor Sci, 2022, 33(3): 270-281. doi:  10.11898/1001-7313.20220302
    [39]
    Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269. doi:  10.11898/1001-7313.20220301
    [40]
    China Meteorological Administration. Grade of Weather Conditions for Freeway Transportation: QX/T 111-2010. Beijing: China Meteorological Press, 2010.
    [41]
    China Meteorological Administration. The Warning Levels of High-impact Weather on Highway Traffic: QX/T 414-2018. Beijing: China Meteorological Press, 2018.
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(4)

    Article views (704) PDF downloads(102) Cited by()
    • Received : 2023-10-15
    • Accepted : 2023-11-27
    • Published : 2024-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint