降水等级 | 雨强/(mm·h-1) | 样本量 | 样本比例/% |
弱降水 | [0.1, 5) | 25207 | 95.98 |
一般降水 | [5, 10) | 780 | 2.97 |
中等降水 | [10, 25) | 269 | 1.02 |
强降水 | [25, +∞) | 7 | 0.03 |
Citation: | Li Dan, Lin Wen, Liu Qun, et al. Application of machine learning to statistical evaluation of artificial rainfall enhancement. J Appl Meteor Sci, 2024, 35(1): 118-128. DOI: 10.11898/1001-7313.20240110. |
Table 1 Sample size of different rainfall categories in 2014-2023
降水等级 | 雨强/(mm·h-1) | 样本量 | 样本比例/% |
弱降水 | [0.1, 5) | 25207 | 95.98 |
一般降水 | [5, 10) | 780 | 2.97 |
中等降水 | [10, 25) | 269 | 1.02 |
强降水 | [25, +∞) | 7 | 0.03 |
[1] |
Mao J T, Zheng G G. Discussions on some weather modification issues. J Appl Meteor Sci, 2006, 17(5): 643-646. doi: 10.3969/j.issn.1001-7313.2006.05.015
|
[2] |
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[3] |
Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. doi: 10.3969/j.issn.1001-7313.2006.06.016
|
[4] |
Ye J D, Fan B F. Statistical and Mathematical Methods of Weather Modification. Beijing: Science Press, 1982.
|
[5] |
Ye J D, Fan B F, Du J C. Study of negative effects in artificial precipitation enhancement experiments. J Appl Meteor Sci, 1998, 9(3): 336-344. http://qikan.camscma.cn/article/id/19980348
|
[6] |
Zeng G P, Fang S Z. The result multivariate analysis of artificial rainfall in Fujian Gutian Area during 1975-1984. J Trop Meteor, 1986, 2(4): 336-342.
|
[7] |
Zeng G P, Fang S Z, Xiao F. The total analysis of the effect of artificial rainfall in Gutian Reservoir Area, Fujian(1975-1986). Chinese J Atmos Sci, 1991, 15(4): 97-108. doi: 10.3878/j.issn.1006-9895.1991.04.11
|
[8] |
Zeng G P, Wu M L, Lin C C, et al. A comprehensive evaluation of the effect of artificial precipitation in Gutian Reservior Area. J Appl Meteor Sci, 1993, 4(2): 154-161. http://qikan.camscma.cn/article/id/19930229
|
[9] |
Zeng G P. Statistical simulation study on the effect of non-randomized artificial precipitation enhancement experiment. J Appl Meteor Sci, 1999, 10(2): 255-256. doi: 10.3969/j.issn.1001-7313.1999.02.017
|
[10] |
Zeng G P, Zhang C A, Li M L. Study on statistic numerical simulation method of precept statistic design of artificial precipitation. Chinese J Atmos Sci, 2000, 24(1): 131-141.
|
[11] |
Jiang N C, Wu L L, Zeng G P. On effect test of drought-resistant rocketry artificial precipitation enhancement operation. Meteor Mon, 2006, 32(8): 54-58.
|
[12] |
Wang Y L, Li D S, Liu S J. Stratified sampling historical regression method for aircraft precipitation enhancement effect test. Climate Environ Res, 2012, 17(6): 862-870.
|
[13] |
Wang W, Shi Y H, Li H Y, et al. A method for evaluating effectiveness of convective cloud precipitation enhancement and its application. Meteor Sci Technol, 2014, 42(6): 1131-1136. doi: 10.3969/j.issn.1671-6345.2014.06.031
|
[14] |
Jia S, Yao Z Y. Case study on the convective clouds seeding effects in Yangtze-Huaihe Region. Meteor Mon, 2016, 42(2): 238-245.
|
[15] |
Tang R M, Yuan Z T, Xiang Y C, et al. A method for selecting contrast cloud automatically based on radar echo in effectiveness evaluation of rain enhancement. Meteor Mon, 2010, 36(4): 96-100. doi: 10.3969/j.issn.1673-8411.2010.04.028
|
[16] |
Wang Y L, Yao Z Y, Lin C C. Analysis of radar echoes at different heights before and after precipitation enhancement. J Arid Meteor, 2018, 36(4): 644-651.
|
[17] |
Liu Q, Yao Z Y. On physical eveluation of aircraft cloud seeding and case study. Meteor Mon, 2013, 39(10): 1359-1368. doi: 10.7519/j.issn.1000-0526.2013.10.015
|
[18] |
Hu S P, Lin W, Lin C C, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. doi: 10.11898/1001-7313.20230606
|
[19] |
Lou X F, Fu Y, Sun J. A numerical seeding simulation of convective precipitation in Zhejiang, China. J Appl Meteor Sci, 2019, 30(6): 665-676. doi: 10.11898/1001-7313.20190603
|
[20] |
Hong Y C, Zhou F F. A numerical simulation study of precipitation formation mechanism of "seeding-feeding" cloud system. Chinese J Atmos Sci, 2005, 29(6): 885-896. doi: 10.3878/j.issn.1006-9895.2005.06.05
|
[21] |
Gong D L, Wang J, Liu S J. Numerical simulation of cloud microphysical structure and artificial seeding condition in precipitation cloud in Shandong Province. Plateau Meteor, 2006, 25(4): 723-730. doi: 10.3321/j.issn:1000-0534.2006.04.022
|
[22] |
Wang W, Yao Z Y. Statistical estimation of artificial precipitation enhancement effectiveness in Beijing in 2006. Plateau Meteor, 2009, 28(1): 195-202.
|
[23] |
Wang L, Wei Z A, Cheng P, et al. Statistical tests and analysis of effective evaluation of artificial precipitation enhancement operation of Hunan. J Meteor Res Appl, 2019, 40(3): 85-89. doi: 10.3969/j.issn.1673-8411.2019.03.020
|
[24] |
Liu Q. The Statistical Method Optimization and Case Study of Effectiveness Test in Precipitation Enhancement. Beijing: Academy of Meteorological Sciences, 2013.
|
[25] |
Cheng P, Chen Q, Jiang Y Y, et al. Effect evaluation of artificial rainfall enhancement in the Shiyang River Basin of Hexi Corridor in the latest 10 years. Plateau Meteor, 2021, 40(4): 866-874.
|
[26] |
Wang F, Li J M, Yao Z Y, et al. Advances of quantitative evaluation studies of artificial precipitation enhancement in China. Meteor Mon, 2022, 48(8): 945-962.
|
[27] |
Wang W, Yao Z Y. Accuracy analysis of statistical evaluation result in precipitation enhancement experiment. Meteor Sci Technol, 2009, 37(2): 209-215. doi: 10.3969/j.issn.1671-6345.2009.02.018
|
[28] |
Ye J D, Li T L. Evaluation methods of cloud seeding effect with regional control and covariable regression analysis. Sci Meteor Sinica, 2001, 21(1): 64-72.
|
[29] |
Wu X H, Niu S J, Jin D Z, et al. Influence of natural rainfall variability on the evaluation of artificial precipitation enhancement. Sci China(Earth Sci), 2015, 45(7): 1011-1019.
|
[30] |
Fang B, Xiao H, Ban X X. Comparison between CA-FCM and some other methods for evaluating precipitation enhancement effectiveness. Meteor Sci Technol, 2008, 36(5): 612-621. doi: 10.3969/j.issn.1671-6345.2008.05.021
|
[31] |
Fang B, Xiao H, Wang Z H, et al. Application of cluster analysis to the statistical assessment of the effect of artifical rain enhancement. J Nanjing Inst Meteor, 2005, 28(6): 739-745. doi: 10.3969/j.issn.1674-7097.2005.06.003
|
[32] |
Zhai Y, Xiao H, Du B Y, et al. Application of the cluster statistical test to effectiveness evaluation of artificial precipitation enhancement. J Nanjing Inst Meteor, 2008, 31(2): 228-233. doi: 10.3969/j.issn.1674-7097.2008.02.012
|
[33] |
Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. doi: 10.11898/1001-7313.20230404
|
[34] |
Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109
|
[35] |
Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292. doi: 10.11898/1001-7313.20220303
|
[36] |
Lan Y, Luo C, Wu Z F, et al. The assessment of application effectiveness of three machine learning methods in automatic identification of thunderstorm gale in Guangdong. J Trop Meteor, 2023, 39(2): 256-266.
|
[37] |
Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593. doi: 10.11898/1001-7313.20220506
|
[38] |
Wang X. Big Data Analysis: Methods and Applications. Beijing: Tsinghua University Press, 2013.
|
[39] |
Hu Z J. Covariance statistical analysis method for testing the effect of artificial precipitation. Meteor Mon, 1979, 5(9): 31-33.
|
[40] |
Lin C C, Yao Z Y, Lin W, et al. Analysis on cloud echoes characteristics and operational conditions of precipitation enhancement in Gutian of Fujian. Trans Atmos Sci, 2017, 40(1): 138-144.
|
[41] |
Wang X, Chu T J. Non-parametric Statistics(2nd ed). Beijing: Tsinghua University Press, 2014.
|
[42] |
Wang H J. Machine Learning: Python Sklearn Tensor Flow 2.0 Micro-Lesson Video Version. Beijing: Tsinghua University Press, 2020.
|