Chen Lijuan, Wang Yueying, Li Weijing, et al. Review of the influence and application of SST anomaly to flood season precipitation in China. J Appl Meteor Sci, 2024, 35(2): 129-141. DOI:  10.11898/1001-7313.20240201.
Citation: Chen Lijuan, Wang Yueying, Li Weijing, et al. Review of the influence and application of SST anomaly to flood season precipitation in China. J Appl Meteor Sci, 2024, 35(2): 129-141. DOI:  10.11898/1001-7313.20240201.

Review of the Influence and Application of SST Anomaly to Flood Season Precipitation in China

DOI: 10.11898/1001-7313.20240201
  • Received Date: 2023-12-01
  • Rev Recd Date: 2024-01-08
  • Publish Date: 2024-03-31
  • The spatial distribution of precipitation anomalies during flood season and characteristics of drought and flood disasters in China are directly affected by the speed and stagnation of the East Asian summer monsoon (EASM). EASM is significantly affected by external forcing such as sea surface temperature, land surface processes, ice and snow cover, and internal dynamic anomalies of atmospheric circulation. The sea surface temperature (SST) anomaly and its evolution have always been important factors for predicting precipitation during the flood season, considering lead time and the strength of precipitation prediction in flood season.Based on the scientific understanding and application of the mechanism of El Niño-southern oscillation (ENSO) cycle and other Ocean SST on the key factors of EASM, the prediction skill of flood season precipitation is reviewed. According to a prediction evaluation spanning over 40 years of historical records, the prediction accuracy for different types of rainfall pattern, the prediction accuracy of rain types in 1981-1990, 1991-2000, 2001-2010, and 2011-2020 is 50%/30%, 60%/30%, 50%/40%, and 70%/50%, respectively. In other words, the prediction of the primary rainfall patterns during the flood season in China is closer to the observation, and the accuracy of predicting spatial distribution patterns of drought and flood has significantly improved. This improvement can be attributed to the in-depth understanding of the impact of SST on EASM activities and enhancements made to dynamic climate models. In the history of flood season prediction, there have been both successful and unsuccessful cases. The years with low prediction accuracy and significant flooding events are as follows: 1983, 1991, 1999, 2003, and 2014. The primary basis for prediction is analyzed, revealing that the limited understanding of the mechanism of SST affecting the EASM had a great impact on the skill of precipitation predictions during the flood season. Among these factors, the influence of different phases of the ENSO cycle, the asymmetry of ENSO's influence, the change in ENSO spatial patterns, and the influence of other local seas, such as the Indian Ocean SST anomaly, all play important roles.The importance of multi-factor and multi-scale synergy theory and application, as well as the technical support of the objectification method for prediction, are emphasized in summarizing causes for low prediction skill cases. Finally, some suggestions for improving future flood season precipitation predictions are put forward, and it is emphasized that the development of a multi-factor and multi-time scale synergistic theory, an objective climate prediction method, and an integrated system for monitoring, predictions and impact assessment will significantly enhance predictions and provide services for flood season precipitation.
  • Fig. 1  Prediction score and anomaly correlation coefficient for precipitation prediction in flood season (red bars denote years with low prediction skill)

    Fig. 2  Prediction accuracy of summer rainfall pattern in recent 40 years

    Table  1  Prediction and observation of 3 types of rainfall pattern in flood season

    年份 实况雨型 预测雨型 年份 实况雨型 预测雨型
    1981 1 3 2001 3 2
    1982 2 2 2002 3 3
    1983 3 1 2003 2 1
    1984 2 2 2004 1 1
    1985 1 2 2005 2 3
    1986 3 1 2006 3 2
    1987 3 3 2007 2 3
    1988 1 1 2008 2 2
    1989 2 2 2009 2 2
    1990 2 1 2010 2 2
    1991 2 1 2011 3 2
    1992 1 1 2012 1 2
    1993 3 3 2013 1 1
    1994 1 1 2014 3 2
    1995 1 1 2015 3 3
    1996 3 2 2016 3 3
    1997 3 1 2017 3 3
    1998 3 3 2018 1 1
    1999 3 2 2019 3 3
    2000 2 2 2020 3 3
    注:1代表华北多,2代表黄河与长江之间多,3代表长江以南多。
    DownLoad: Download CSV

    Table  2  Prediction and observation of 4 types of rainfall pattern in flood season

    年份 实况雨型 预测雨型 年份 实况雨型 预测雨型
    1981 1 1 2001 4 2
    1982 2 2 2002 4 2
    1983 3 1 2003 2 1
    1984 2 2 2004 1 1
    1985 1 2 2005 2 3
    1986 3 1 2006 4 2
    1987 1 3 2007 2 3
    1988 2 1 2008 2 2
    1989 1 2 2009 2 2
    1990 3 1 2010 2 2
    1991 1 1 2011 3 2
    1992 4 1 2012 1 2
    1993 4 3 2013 1 1
    1994 1 1 2014 4 2
    1995 3 1 2015 3 3
    1996 4 2 2016 3 3
    1997 3 1 2017 4 4
    1998 4 3 2018 1 1
    1999 4 2 2019 4 3
    2000 2 2 2020 3 4
    注:1代表黄河流域及华北多,2代表黄河与长江之间多,3代表长江流域多,4代表江南—华南多。
    DownLoad: Download CSV
  • [1]
    Zhao Z G. Drought, Flood and Environmental Field in Summer in China. Beijing: China Meteorological Press, 1999.
    [2]
    Chen X F, Zhao Z G. Study and Application of Precipitation Forecast in Flood Season in China. Beijing: China Meteorological Press, 2000.
    [3]
    Ding Y H, Li Q Q, Li W J, et al. Advance in seasonal dynamical prediction operation in China. Acta Meteor Sinica, 2004, 62(5): 598-612. doi:  10.3321/j.issn:0577-6619.2004.05.007
    [4]
    Li W J, Zhang P Q, Li Q Q, et al. Operation and application of Dynamic Climate Model Prediction System. J Appl Meteor Sci, 2005, 16(Suppl Ⅰ): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2005S1000.htm
    [5]
    Wu T W, Song L C, Liu X W, et al. Progress in developing the Short-range Operational Climate Prediction System of China National Climate Center. J Appl Meteor Sci, 2013, 24(5): 533-543. doi:  10.3969/j.issn.1001-7313.2013.05.003
    [6]
    Wu J, Ren H L, Zhang S, et al. Evaluation and predictability analysis of seasonal prediction by BCC second-generation climate system model. Chinese J Atmos Sci, 2017, 41(6): 1300-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201706013.htm
    [7]
    Wang H J, Ren H L, Chen H P, et al. Highlights of climate prediction study and operation in China over the past decades. Acta Meteor Sinica, 2020, 78(3): 317-331. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003001.htm
    [8]
    Wu T W, Yu R C, Lu Y X, et al. BCC-CSM2-HR: A high-resolution version of the Beijing Climate Center Climate System Model. Geosci Model Dev, 2021, 14(5): 2977-3006. doi:  10.5194/gmd-14-2977-2021
    [9]
    Li W J, Chen L J. Research on reexplanation and reanalysis method of dynamical extended range forecast products. Acta Meteor Sinica, 1999, 57(3): 338-345. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200506008.htm
    [10]
    Chen L J, Li W J, Zhang P Q, et al. Application of a new downscaling model to monthly precipitation forecast. J Appl Meteor Sci, 2003, 14(6): 648-655. doi:  10.3969/j.issn.1001-7313.2003.06.002
    [11]
    Gu W Z, Chen L J, Zhang P Q, et al. Downscaling precipitation prediction in China based on optimization information extracted from monthly dynamic extended range forecast. Acta Meteor Sinica, 2009, 67(2): 280-287. doi:  10.3321/j.issn:0577-6619.2009.02.011
    [12]
    Gu W Z, Chen L J, Li W J, et al. Development of a downscaling method in China regional summer precipitation prediction. Acta Meteor Sinica, 2011, 25(3): 303-315. doi:  10.1007/s13351-011-0306-2
    [13]
    Ke Z J, Zhang P Q, Chen L J, et al. An experiment of a statistical downscaling forecast model for summer precipitation over China. Atmos Ocean Sci Lett, 2011, 4(5): 270-275. doi:  10.1080/16742834.2011.11446941
    [14]
    Jia X L, Chen L J, Luo J J. Climate prediction experiment for tropical cyclone genesis frequency using the large-scale circulation forecast by a coupled global circulation model. J Trop Meteor, 2014, 20(2): 103-111.
    [15]
    Liu C Z, Du L M, Ke Z J, et al. Multi-model downscaling ensemble prediction in National Climate Center. J Appl Meteor Sci, 2013, 24(6): 677-685. doi:  10.3969/j.issn.1001-7313.2013.06.004
    [16]
    Ren H L, Wu Y J, Bao Q, et al. The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. J Meteor Res, 2019, 33(3): 540-552. doi:  10.1007/s13351-019-8154-6
    [17]
    Ren H L, Chou J F. Research on strategy and method of dynamic similarity prediction. Sci China(Earth Sci), 2007, 37(8): 1101-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200708014.htm
    [18]
    Ren H L. Relationships between prediction errors and physical predictors in dynamical seasonal prediction. J Appl Meteor Sci, 2008, 19(3): 276-286. doi:  10.3969/j.issn.1001-7313.2008.03.003
    [19]
    Zheng Z H, Ren H L, Huang J P. Analogue correction of errors based on seasonal climatic predictable components and numerical experiments. Acta Phys Sinica, 2009, 58(10): 7359-7367. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200910115.htm
    [20]
    Feng G L, Zhao J H, Zhi R, et al. Recent progress on the objective and quantifiable forecast of summer precipitation based on dynamical-statistical method. J Appl Meteor Sci, 2013, 24(6): 656-665. doi:  10.3969/j.issn.1001-7313.2013.06.002
    [21]
    Cheng Y B, Ren H L, Tan G R. Empirical orthogonal function-analogue correction of extra-seasonal dynamical prediction of East-Asian summer monsoon. J Appl Meteor Sci, 2016, 27(3): 285-292. doi:  10.11898/1001-7313.20160303
    [22]
    Liu Y, Fan K, Chen L J, et al. An operational statistical downscaling prediction model of the winter monthly temperature over China based on a multi-model ensemble. Atmos Res, 2021, 249. DOI: 10.1016/j.atmosres.2020.105262.
    [23]
    Pang Y S, Zhang J, Qin N S, et al. Forecast model of interannual increment for summer runoff and its verification in the upper reaches of the Yangtze River. J Appl Meteor Sci, 2022, 33(1): 115-128. doi:  10.11898/1001-7313.20220110
    [24]
    Chen L J, Yuan Y, Yang M Z, et al. A review of physical mechanisms of the global SSTA impact on EASM. J Appl Meteor Sci, 2013, 24(5): 521-532. doi:  10.3969/j.issn.1001-7313.2013.05.002
    [25]
    Jia X L, Chen L J, Gao H, et al. Advances of the Short-range Climate prediction in China. J Appl Meteor Sci, 2013, 24(6): 641-655. doi:  10.3969/j.issn.1001-7313.2013.06.001
    [26]
    Ren H C, Zuo J Q, Li W J. The impact of tropical Atlantic SST variability on the tropical atmosphere during boreal summer. J Climate, 2021, 34: 6705-6723.
    [27]
    Li W J. Study on the Mechanism and Prediction Methods of Drought and Flood Change in South China under Climate Warming. Beijing: China Meteorological Press, 2023.
    [28]
    Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi:  10.11898/1001-7313.20220210
    [29]
    Fu C B, Teng X L. Climate anomalies in China associated with E1 Niño/Southern Oscillation. Chinese J Atmos Sci, 1988, 12(Suppl Ⅰ): 133-141.
    [30]
    Wang B, Wu R G, Fu X. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?. J Climate, 2000, 13(9): 1517-1536. doi:  10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [31]
    Wu R G, Hu Z Z, Kirtman B P. Evolution of ENSO-related rainfall anomalies in East Asia. J Climate, 2003, 16(22): 3742-3758. doi:  10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2
    [32]
    Zhang R H, Min Q Y, Su J Z. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci Sinica(Earth Sci), 2017, 47(5): 544-553. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201705004.htm
    [33]
    McPhaden M J. Playing hide and seek with El Niño. Nature Clim Change, 2015, 5(9): 791-795. doi:  10.1038/nclimate2775
    [34]
    Ren H L, Zheng F, Luo J J, et al. A review of research on tropical air-sea interaction, ENSO dynamics, and ENSO prediction in China. Acta Meteor Sinica, 2020, 78(3): 351-369. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003003.htm
    [35]
    Xue F, Duan X Y, Su T H. Comparison of intraseasonal variation of the East Asian summer monsoon between El Niño developing years and La Niña years. Clim Environ Res, 2018, 23(3): 321-331. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201803007.htm
    [36]
    Song X M, Zhang R H, Rong X Y. Influence of intraseasonal oscillation on the asymmetric decays of El Niño and La Niña. Adv Atmos Sci, 2019, 36(8): 779-792. doi:  10.1007/s00376-019-9029-6
    [37]
    Zhou X Y, Liu F, Wang B, et al. Different responses of East Asian summer rainfall to El Niño decays. Climate Dyn, 2019, 53(3): 1497-1515.
    [38]
    Ashok K, Behera S K, Rao S A, et al. El Niño Modoki and its possible teleconnection. J Geophys Res Oceans, 2007, 112. DOI: 10.1029/2006JC003798.
    [39]
    Feng J, Chen W, Tam C Y, et al. Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol, 2011, 31(14): 2091-2101. doi:  10.1002/joc.2217
    [40]
    Yuan Y, Yang S. Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J Climate, 2012, 25(21): 7702-7722. doi:  10.1175/JCLI-D-11-00576.1
    [41]
    Xue F, Liu C Z. Influence of moderate intensity ENSO on summer precipitation in eastern China and its comparative analysis with strong ENSO. Chinese Sci Bull, 2007, 52(23): 2798-2805. doi:  10.3321/j.issn:0023-074x.2007.23.017
    [42]
    Zhai P M, Yu R, Guo Y J, et al. The strong El Niño in 2015/2016 and its dominant impacts on global and China's climate. Acta Meteor Sinica, 2016, 74(3): 309-321. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201603001.htm
    [43]
    Liu M H, Ren H L, Zhang W J, et al. Influence of super El Niño events on the frequency of spring and summer extreme precipitation over Eastern China. Acta Meteor Sinica, 2018, 76(4): 539-553. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201804004.htm
    [44]
    Ren H L, Lu B, Wan J H, et al. Identification standard for ENSO events and its application to climate monitoring and prediction in China. J Meteor Res, 2018, 32(6): 923-936. doi:  10.1007/s13351-018-8078-6
    [45]
    Sun L H, Zhao Z G, Xu L, et al. Division of summer rain patterns and analysis of circulation causes in monsoon region of East China. J Appl Meteor Sci, 2005, 16(Suppl Ⅰ): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2005S1006.htm
    [46]
    Li X Q. Overview of national flood season precipitation forecast conference in 1983. Meteor Mon, 1983, 9(6): 10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198306002.htm
    [47]
    Shi J E, Lin X C, Zhou Q F. Relationship between El Niño phenomenon and summer precipitation and temperature in China(June-August). Meteor Mon, 1983, 9(4): 2-5. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198304000.htm
    [48]
    Institute of Atmospheric Physics, Chinese Academy of Sciences. Air-sea Interaction and Long-term Forecast of Drought and Flood. Beijing: Science Press, 1978.
    [49]
    Wyrtki K. El Niño: The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr, 1975, 5(4): 572-584. doi:  10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
    [50]
    Gill A E. Some simple solutions for heat-induced tropical circulation. Q J R Meteor Soc, 1980, 106(449): 447-462.
    [51]
    Wang S W. El Niño and southern oscillation(ENSO) in 1982-1983. Meteor Sci Technol, 1984, 12(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ198403000.htm
    [52]
    Wagner A J. The climate of summer 1982-A season with increasingly anomalous circulation over the equatorial Pacific Ocean. Mon Wea Rev, 1983, 111(3): 590-601. doi:  10.1175/1520-0493(1983)111<0590:TCOSSW>2.0.CO;2
    [53]
    Zhu Y M, Yang X Q. Relationships between Pacific decadal oscillation(PDO) and climate variabilities in China. Acta Meteor Sinica, 2003, 61(6): 641-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200306000.htm
    [54]
    Ding Y H. Study on the Persistent Torrential Rain in Jianghuai Basin in 1991. Beijing: China Meteorological Press, 1993.
    [55]
    Huang R H. Views on the causes of catastrophic floods in Huaihe River Basin and the middle and lower reaches of the Yangtze River this summer and its forecast. Disaster Reduct China, 1991(3): 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJI199103010.htm
    [56]
    Huang R H, Yin B Y, Liu A D. Intraseasonal Variability of the East Asian Summer Monsoon and Its Association with the Convective Activities in the Tropical Western Pacific//Climate Variability. Beijing: Chinese Meteorological Press, 1992.
    [57]
    Chen W. Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chinese J Atmos Sci, 2002, 26(5): 595-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202002015.htm
    [58]
    Lu E, Ding Y H. Analysis of summer monsoon activity during the 1991 excessively torrential rain over Changjiang-Huaihe River Valley. J Appl Meteor Sci, 1997, 8(3): 316-324. http://qikan.camscma.cn/article/id/19970345
    [59]
    Mao J Y, Wu G X. Intraseasonal variability in the Yangtze-Huaihe River rainfall and subtropical high during the 1991 Meiyu period. Acta Meteor Sinica, 2005, 63(5): 762-770. doi:  10.3321/j.issn:0577-6619.2005.05.020
    [60]
    Ding Y H, Hu W, Huang Y, et al. The main scientific achievements of the first China-Japan cooperative GAME/HUBEX experiments: A historical review. Acta Meteor Sinica, 2020, 78(5): 721-734. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202005001.htm
    [61]
    Ni D H, Sun Z B, Zhao Y C. Influence of ENSO cycle at different phases in summer on the East Asian summer monsoon. J Nanjing Inst Meteor, 2000, 23(1): 48-54. doi:  10.3969/j.issn.1674-7097.2000.01.008
    [62]
    Zhang R H, Sumi A, Kimoto M. Impact of El Niño on the East Asian monsoon. J Meteor Soc Japan, 1996, 74(1): 49-62. doi:  10.2151/jmsj1965.74.1_49
    [63]
    Hoerling M P, Kumar A, Zhong M. El Niño, La Niña, and the nonlinearity of their teleconnections. J Climate, 1997, 10(8): 1769-1786. doi:  10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2
    [64]
    Sun Y, Ding Y H. A study on physical mechanisms of anomalous activities of East Asian summer monsoon during 1999. Acta Meteor Sinica, 2003, 61(4): 406-420. doi:  10.3321/j.issn:0577-6619.2003.04.003
    [65]
    Song W L. General circulation and its impact over the Northern Hemisphere in 1999. Meteor Mon, 2000, 26(4): 12-16. doi:  10.3969/j.issn.1000-0526.2000.04.003
    [66]
    Huang R H, Liu Y, Feng T. Interdecadal variation characteristics and internal dynamic causes of summer precipitation and circulation in eastern China in the late 1990s. Chinese Sci Bull, 2013, 58(8): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201308003.htm
    [67]
    Kao H Y, Yu J Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. J Climate, 2009, 22(3): 615-632. doi:  10.1175/2008JCLI2309.1
    [68]
    Kug J S, Jin F F, An S I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Climate, 2009, 22(6): 1499-1515. doi:  10.1175/2008JCLI2624.1
    [69]
    Yuan Y, Yang H, Li C Y. Study of El Niño events of different types and their potential impact on the following-summer precipitation in China. Acta Meteor Sinica, 2012, 70(3): 467-478. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201203010.htm
    [70]
    Weng H Y, Ashok K, Behera S K, et al. Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn, 2007, 29(2): 113-129.
    [71]
    Huang G, Yan Z W. Anomalous index of East Asian summer monsoon circulation and its interannual variation. Chinese Sci Bull, 1999, 44(4): 421-424. doi:  10.3321/j.issn:0023-074X.1999.04.020
    [72]
    Sun L H, Song W L, Gong Z S. Preliminary study of precursor and its application in summer climate prediction and its complexity in 2014. Meteor Mon, 2015, 41(5): 639-648. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201505012.htm
    [73]
    Yuan Y, Yang S, Zhang Z Q. Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J Climate, 2012, 25(22): 7867-7883. doi:  10.1175/JCLI-D-12-00004.1
    [74]
    Xie S P, Kosaka Y, Du Y, et al. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv Atmos Sci, 2016, 33(4): 411-432. doi:  10.1007/s00376-015-5192-6
    [75]
    Li W J, Zhang R N, Sun C H, et al. Recent research advances on the interannual-interdecadal variations of drought/flood in south China and associated causes. J Appl Meteor Sci, 2016, 27(5): 577-591. doi:  10.11898/1001-7313.20160507
    [76]
    Li W J. General atmospheric circulation anomaly in 1998 and their impact on climate anomaly in China. Meteor Mon, 1999, 25(4): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX904.005.htm
    [77]
    Chen L J, Gu W, Gong Z S, et al. Precursory signals of the 2018 summer climate in China and evaluation of real-time prediction. Meteor Mon, 2019, 45(4): 553-564. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201904010.htm
    [78]
    Chen L J, Gu W, Li W J. Why is the East Asian summer monsoon extremely strong in 2018?-Collaborative effects of SST and snow cover anomalies. J Meteor Res, 2019, 33(4): 593-608. doi:  10.1007/s13351-019-8200-4
    [79]
    Zhang D Q, Yuan Y, Han R Q. Overview of climate prediction for the summer 2022 in China and its precursors. Meteor Mon, 2023, 49(3): 365-378. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202303010.htm
    [80]
    Zhang D Q, Yuan Y, Han R Q. Characteristics and possible causes of the climate anomalies over China in summer 2022. Meteor Mon, 2023, 49(1): 110-121. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202301010.htm
    [81]
    Okumura Y M, DiNezio P, Deser C. Evolving impacts of multiyear La Niña events on atmospheric circulation and US drought. Geophys Res Lett, 2017, 44(22): 11614-11623.
    [82]
    Wang H J. The weakening of the Asian monsoon circulation after the end of 1970's. Adv Atmos Sci, 2001, 18(3): 376-386. doi:  10.1007/BF02919316
    [83]
    Gao H, Wang Y G, He J H. Weakening significance of ENSO as a predictor of summer precipitation in China. Geophys Res Lett, 2006, 33. DOI: 10.1029/2005GL025511.
    [84]
    Ding Y H, Sun Y, Wang Z Y, et al. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part Ⅱ: Possible causes. Int J Climatol, 2009, 29(13): 1926-1944. doi:  10.1002/joc.1759
    [85]
    Sun L Y, Yang X Q, Tao L F, et al. Changing impact of ENSO events on the following summer rainfall in Eastern China since the 1950s. J Climate, 2021, 34(20): 8105-8123. doi:  10.1175/JCLI-D-21-0018.1
    [86]
    Yuan Y, Gao H, Li W J, et al. The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J Meteor Res, 2017, 31(2): 261-277. doi:  10.1007/s13351-017-6192-5
    [87]
    Ding Y H, Liu Y Y, Hu Z Z. The record-breaking Mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv Atmos Sci, 2021, 38(12): 1980-1993. doi:  10.1007/s00376-021-0361-2
    [88]
    Zhao J H, Zuo J Q, Zhang H, et al. Extreme precipitation driven by the rapid tropical Atlantic warming and the second developing La Niña over the Yangtze-Huaihe River Basin in August 2021. Climate Dyn, 2023, 61(5): 2581-2598.
    [89]
    Chen L J, Zhao J H, Gu W, et al. Advances of research and application on major rainy seasons in China. J Appl Meteor Sci, 2019, 30(4): 385-400. doi:  10.11898/1001-7313.20190401
    [90]
    Li W J. Modern Climate Business. Beijing: China Meteorological Press, 2012.
    [91]
    Johnson S J, Stockdale T N, Ferranti L, et al. SEAS5: The new ECMWF seasonal forecast system. Geosci Model Dev, 2019, 12(3): 1087-1117. doi:  10.5194/gmd-12-1087-2019
    [92]
    Liu Y Y, Hu Z Z, Wu R G, et al. Subseasonal prediction and predictability of summer rainfall over Eastern China in BCC_AGCM2.2. Climate Dyn, 2021, 56(7): 2057-2069.
    [93]
    Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109
    [94]
    Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi:  10.11898/1001-7313.20220304
    [95]
    Jin W X, Luo Y, Wu T W, et al. Deep learning for seasonal precipitation prediction over China. J Meteor Res, 2022, 36(2): 271-281. doi:  10.1007/s13351-022-1174-7
    [96]
    Li Y, Wang G F. Design and implementation of meteorological disaster risk management system. J Appl Meteor Sci, 2022, 33(5): 628-640. doi:  10.11898/1001-7313.20220510
  • 加载中
  • -->

Catalog

    Figures(2)  / Tables(2)

    Article views (181) PDF downloads(56) Cited by()
    • Received : 2023-12-01
    • Accepted : 2024-01-08
    • Published : 2024-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint