[1]
|
English S J, Renshaw R J, Dibben P C, et al.A comparison of the impact of TOVS arid ATOVS satellite sounding data on the accuracy of numerical weather forecasts.Q J R Meteor Soc, 2000, 126(569):2911-2931.
|
[2]
|
Eyre J R, Bell W, Cotton J, et al. Assimilation of satellite data in numerical weather prediction. Part Ⅱ: Recent years. Q J R Meteor Soc, 2022, 148(743): 521-556. doi: 10.1002/qj.4228
|
[3]
|
Kaplan L D. Inference of atmospheric structure from remote radiation measurements. J Opt Soc Amer, 1959, 49(10): 1004-1007. doi: 10.1364/JOSA.49.001004
|
[4]
|
|
[5]
|
Stogryn A. Estimates of brightness temperatures from scanning radiometer data. IEEE Trans Anntenas Propag, 1978, 26(5): 720-726. doi: 10.1109/TAP.1978.1141919
|
[6]
|
Andersson E, Pailleux J, Thepaut J N, et al. Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Q J R Meteor Soc, 1994, 120(517): 627-653.
|
[7]
|
McNally A P, Vesperini M. Variational analysis of humidity information from TOVS radiances. Q J R Meteor Soc, 1996, 122(535): 1521-1544. doi: 10.1002/qj.49712253504
|
[8]
|
Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi: 10.11898/1001-7313.20230105
|
[9]
|
|
[10]
|
Lorenc A C. Analysis methods for numerical weather prediction. Q J R Meteor Soc, 1986, 112(474): 1177-1194. doi: 10.1002/qj.49711247414
|
[11]
|
Talagrand O, Courtier P. Variational assimilation of meteorological observations with the adjoint vorticity equation. Ⅰ: Theory. Q J R Meteor Soc, 1987, 113(478): 1311-1328. doi: 10.1002/qj.49711347812
|
[12]
|
Eyre J. A Fast Radiative Transfer Model for Satellite Sounding Systems. ECMWF Technical Memorandum, 176, 1991.
|
[13]
|
McMillin L M, Crone L J, Goldberg M D, et al. Atmospheric transmittance of an absorbing gas. 4. OPTRAN: A computationally fast and accurate transmittance model for absorbing gases with fixed and with variable mixing ratios at variable viewing angles. Appl Opt, 1995, 34(27): 6269-6274. doi: 10.1364/AO.34.006269
|
[14]
|
Eyre J R, Kelly G A, McNally A P, et al. Assimilation of TOVS radiance information through one-dimensional variational analysis. Q J R Meteor Soc, 1993, 119(514): 1427-1463.
|
[15]
|
|
[16]
|
McNally A, Andersson E, Kelly G, et al. The Use of Raw TOVS/ATOVS Radiances in the ECMWF 4D-var Assimilation System//Technical Proceedings of the 10th International TOVS Study Conference, 1999: 377-384.
|
[17]
|
Wang J C, Lu H J, Han W, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. doi: 10.11898/1001-7313.20170102
|
[18]
|
Zhang L, Liu Y Z, Liu Y, et al. The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Q J R Meteor Soc, 2019, 145(722): 1882-1896. doi: 10.1002/qj.3533
|
[19]
|
|
[20]
|
|
[21]
|
Saunders R, Matricardi M, Brunel P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q J R Meteor Soc, 1999, 125(556): 1407-1425. doi: 10.1002/qj.1999.49712555615
|
[22]
|
McNally A P, Derber J C, Wu W, et al. The use of TOVS level-1b radiances in the NCEP SSI analysis system. Q J R Meteor Soc, 2000, 126(563): 689-724.
|
[23]
|
Li Z, Chen J, Ma Z S, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502
|
[24]
|
English S, Renshaw R, Dibben P, et al. The AAPP Module for Identifying Precipitation, Ice Cloud, Liquid Water and Surface Types on the AMSU-A grid//Technical Proceedings of the 9th International TOVS Study Conference, 1997: 119-130.
|
[25]
|
Saunders R, Andersson E, Kelly G, et al. Developments in Assimilating Global TOVS Data at the UK Met Office//Technical Proceedings of the 9th International TOVS Study Conference, 1997: 417-428.
|
[26]
|
English S J, Eyre J R, Smith J A. A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction. Q J R Meteor Soc, 1999, 125(559): 2359-2378.
|
[27]
|
|
[28]
|
Qian J M, Zheng X D. The satellite data archive system of National Satellite Meteorological Center. J Appl Meteor Sci, 2003, 14(6): 756-762. doi: 10.3969/j.issn.1001-7313.2003.06.015
|
[29]
|
Geer A J, Baordo F, Bormann N, et al. The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Q J R Meteor Soc, 2017, 143(709): 3189-3206. doi: 10.1002/qj.3172
|
[30]
|
Menzel W P, Schmit T J, Zhang P, et al. Satellite-based atmospheric infrared sounder development and applications. Bull Amer Meteor Soc, 2018, 99(3): 583-603. doi: 10.1175/BAMS-D-16-0293.1
|
[31]
|
Noh Y, Sohn B, Kim Y, et al. A new infrared atmospheric sounding interferometer channel selection and assessment of its impact on Met Office NWP Forecasts. Adv Atmos Sci, 2017, 34: 1265-1281. doi: 10.1007/s00376-017-6299-8
|
[32]
|
Rodgers C D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev Geophys, 1976, 14(4): 609-624. doi: 10.1029/RG014i004p00609
|
[33]
|
Goldberg M D, Qu Y, McMillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans Geosci Remote Sens, 2003, 41(2): 379-389. doi: 10.1109/TGRS.2002.808307
|
[34]
|
Zhang Q. Impacts on initial condition modification from hyperspectral infrared sounding data assimilation: Comparisons between full-spectrum and channel-selection scheme based on two-month experiments using CrIS and IASI observation. Inter J Geosci, 2021, 12(9): 763-783. doi: 10.4236/ijg.2021.129043
|
[35]
|
Chen Y, Han Y. Evaluation of Different Calibration Approaches for S-NPP CRIS Full Spectral Resolution SDR Processing//IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 2015: 2127-2130.
|
[36]
|
Collard A D. Selection of IASI channels for use in numerical weather prediction. Q J R Meteor Soc, 2007, 133(629): 1977-1991. doi: 10.1002/qj.178
|
[37]
|
Smith J, Gambacorta A, Barnet C, et al. The NPP and J1 CrIS Operational High-Resolution Channel Selection for the NUCAPS algorithm: A Demonstration of Global Applicability to Meet Users Needs//AGU Fall Meeting, 2016.
|
[38]
|
|
[39]
|
Pavelin E G, Candy B. Assimilation of surface-sensitive infrared radiances over land: Estimation of land surface temperature and emissivity. Q J R Meteor Soc, 2014, 140(681): 1198-1208. doi: 10.1002/qj.2218
|
[40]
|
Duan S B, Han X J, Huang C, et al. Land surface temperature retrieval from passive microwave satellite observations: State-of-the-art and future directions. Remote Sens, 2020, 12(16). DOI: 10.3390/rs12162573.
|
[41]
|
Prigent C, Aires F, Wang D, et al. Sea-surface emissivity parametrization from microwaves to millimetre waves. Q J R Meteor Soc, 2017, 143(702): 596-605. doi: 10.1002/qj.2953
|
[42]
|
Karbou F, Prigent C, Eymard L, et al. Microwave land emissivity calculations using AMSU measurements. IEEE Trans Geosci Remote Sens, 2005, 43(5): 948-959. doi: 10.1109/TGRS.2004.837503
|
[43]
|
Xiao H Y, Li J, Liu G Q, et al. Assimilation of AMSU-A surface-sensitive channels in CMA-GFS 4D-var system over land. Wea Forecasting, 2023, 38(9): 1777-1790. doi: 10.1175/WAF-D-23-0032.1
|
[44]
|
Noh Y C, Lim A H N, Huang H L, et al. Global forecast impact of low data latency infrared and microwave sounders observations from polar orbiting satellites. Remote Sens, 2020, 12(14). DOI: 10.3390/rs12142193.
|
[45]
|
Diaz S W, CIMAS, Miami F L, et al. Impact of Satellite Data Latency on Global Weather Forecasts. 100th American Meteorological Society, 2020.
|
[46]
|
Lin H D, Weygandt S S, Benjamin S G, et al. Satellite radiance data assimilation within the hourly updated rapid refresh. Wea Forecasting, 2017, 32(4): 1273-1287. doi: 10.1175/WAF-D-16-0215.1
|
[47]
|
Liou K N. An Introduction to Atmospheric Radiation. New York, 2002.
|
[48]
|
Shen X S, Su Y, Hu J L, et al. Development and operation transformation of GRAPES global middle-range forecast system. J Appl Meteor Sci, 2017, 28(1): 1-10. doi: 10.11898/1001-7313.20170101
|
[49]
|
Liu Z Q, Jiang L P, Shi C X, et al. CRA-40/Atmosphere-The first-generation Chinese atmospheric reanalysis(1979-2018): System description and performance evaluation. J Meteor Res, 2023, 37(1): 1-19. doi: 10.1007/s13351-023-2086-x
|
[50]
|
Zhang J, Sun J, Shen X S, et al. Key model technologies of CMA-GFS V4.0 and application to operational forecast. J Appl Meteor Sci, 2023, 34(5): 513-526. doi: 10.11898/1001-7313.20230501
|
[51]
|
Zhang P, Lu Q F, Hu X Q, et al. Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv Atmos Sci, 2019, 36(9): 1027-1045. doi: 10.1007/s00376-019-8215-x
|
[52]
|
Dong P M, Wang H J, Han W, et al. The effect of water content on the simulation of satellite microwave observation in cloudy and rainy area. J Appl Meteor Sci, 2009, 20(6): 682-691. doi: 10.3969/j.issn.1001-7313.2009.06.005
|
[53]
|
Gu S Y, Wang Z Z, Ma G. Meteorological Satellite Microwave Atmospheric Remote Sensing. Beijing: Science Press, 2021.
|
[54]
|
English S, McNally A, Bormann N, et al. Impact of satellite data. ECMWF Technical Memorandum 804, 2013.
|
[55]
|
Wang L K, Tremblay D, Zhang B, et al. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with cross-track infrared sounder. Remote Sens, 2016, 8(1). DOI: 10.3390/rs8010076.
|
[56]
|
Li J, Liu G Q. Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmos Meas Tech, 2016, 9(7): 3095-3113. doi: 10.5194/amt-9-3095-2016
|
[57]
|
Qin L Y, Chen Y D, Yu T L, et al. Dynamic channel selection of microwave temperature sounding channels under cloudy conditions. Remote Sens, 2020, 12(3). DOI: 10.3390/rs12030403.
|
[58]
|
Qin L Y, Chen Y D, Ma G, et al. Assimilation of FY-3D MWTS-Ⅱ radiance with 3D precipitation detection and the impacts on typhoon forecasts. Adv Atmos Sci, 2023, 40(5): 900-919. doi: 10.1007/s00376-022-1252-x
|
[59]
|
Kan W L, Dong P M, Weng F Z, et al. Impact of Fengyun-3E microwave temperature and humidity sounder data on CMA global medium range weather forecasts. Remote Sens, 2022, 14(19). DOI: 10.3390/rs14195014.
|
[60]
|
Ventress L, Dudhia A. Improving the selection of IASI channels for use in numerical weather prediction. Q J R Meteor Soc, 2014, 140(684): 2111-2118. doi: 10.1002/qj.2280
|
[61]
|
Yin R Y, Han W, Gao Z Q, et al. The evaluation of FY4A's Geostationary Interferometric Infrared Sounder(GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Q J R Meteor Soc, 2020, 146(728): 1459-1476. doi: 10.1002/qj.3746
|
[62]
|
Yan X S, Chen Y D, Ma G, et al. A 3-D cloud detection method for FY-4A GIIRS and its application in operational numerical weather prediction system. IEEE Trans Geosci Remote Sens, 2023, 61: 1-13.
|
[63]
|
Wang S J, Cui P, Zhang P, et al. FY-3C/VIRR sea surface temperature products and quality validation. J Appl Meteor Sci, 2020, 31(6): 729-739. doi: 10.11898/1001-7313.20200608
|
[64]
|
Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi: 10.11898/1001-7313.20230301
|
[65]
|
Xiao H Y, Han W, Wang H, et al. Impact of FY-3D MWRI radiance assimilation in GRAPES 4DVar on forecasts of Typhoon Shanshan. J Meteor Res, 2020, 34(4): 836-850. doi: 10.1007/s13351-020-9122-x
|
[66]
|
|
[67]
|
Qi C L, Wu C Q, Hu X Q, et al. High spectral infrared atmospheric sounder(HIRAS): System overview and on-orbit performance assessment. IEEE Trans Geosci Remote Sens, 2020, 58(6): 4335-4352. doi: 10.1109/TGRS.2019.2963085
|
[68]
|
McNally C. Assimilation of Radiance Products from Geostationary Satellites: 1-year Report. EUMET/ECMWF Fellowship Programme Research Reports 21, 2011.
|
[69]
|
Burrows C. Assimilation of Radiance Observations from Geostationary Satellites: Third Year Report. EUMET/ECMWF Fellowship Programme Research Reports 52, 2020.
|
[70]
|
Li J, Geer A J, Okamoto K, et al. Satellite all-sky infrared radiance assimilation: Recent progress and future perspectives. Adv Atmos Sci, 2022, 39(1): 9-21. doi: 10.1007/s00376-021-1088-9
|
[71]
|
Lu Y H, Zhang F Q. A novel channel-synthesizing method for reducing uncertainties in satellite radiative transfer modeling. Geophys Res Lett, 2018, 45(10): 5115-5125. doi: 10.1029/2018GL077342
|
[72]
|
Yu T L, Ma G, Lu F, et al. Quality scoring of the Fengyun 4A clear sky radiance product. Remote Sens, 2021, 13(18). DOI: 10.3390/rs13183658.
|
[73]
|
Wang C F, Li X, Chen Y T, et al. Design of CMA's broadcast system for meteorological data-CMACast. J Appl Meteor Sci, 2012, 23(1): 113-120. doi: 10.3969/j.issn.1001-7313.2012.01.013
|
[74]
|
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|