Citation: | Ge Enbo, Zhao Bin. Evaluation of global energy cycle for CMA-GFS based on scale analysis. J Appl Meteor Sci, 2024, 35(2): 156-167. DOI: 10.11898/1001-7313.20240203. |
[1] |
Zhang M, Yu H P, Huang J P, et al. Assessment on unsystematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2019, 30(3): 332-344. doi: 10.11898/1001-7313.20190307
|
[2] |
Zhang M, Yu H P, Huang J P, et al. Assessment on systematic errors of GRAPES_GFS 2.0. J Appl Meteor Sci, 2018, 29(5): 571-583. doi: 10.11898/1001-7313.20180506
|
[3] |
Li Z, Chen J, Ma Z, et al. Deviation distribution features of CMA-GFS cloud prediction. J Appl Meteor Sci, 2022, 33(5): 527-540. doi: 10.11898/1001-7313.20220502
|
[4] |
Xing N, Zhong J Q, Lei L, et al. A probabilistic forecast experiment of short-duration heavy rainfall in Beijing based on CMA-BJ. J Appl Meteor Sci, 2023, 34(6): 641-654. doi: 10.11898/1001-7313.20230601
|
[5] |
Li H, Wang X M, Lü L Y, et al. Refined verification of numerical forecast of subtropical high edge precipitation in Huanghuai Region. J Appl Meteor Sci, 2023, 34(4): 413-425. doi: 10.11898/1001-7313.20230403
|
[6] |
Margules M. Zur sturmtheorie. Meteor Z, 1906, 23(11): 481-497.
|
[7] |
Lorenz E N. Available potential energy and the maintenance of the general circulation. Tellus, 1955, 7(2): 157-167. doi: 10.3402/tellusa.v7i2.8796
|
[8] |
Oort A H. On estimates of the atmospheric energy cycle. Mon Wea Rev, 1964, 92(11): 483-493. doi: 10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2
|
[9] |
Krueger A F, Winston J S, Haines D A. Computations of atmospheric energy and its transformation for the Northern Hemisphere for a recent five-year period. Mon Wea Rev, 1965, 93(4): 227-238. doi: 10.1175/1520-0493(1965)093<0227:COAEAI>2.3.CO;2
|
[10] |
Marques C A F, Rocha A, Corte-Real J. Comparative energetics of ERA-40, JRA-25 and NCEP-R2 reanalysis, in the wave number domain. Dyn Atmos Oceans, 2010, 50(3): 375-399. doi: 10.1016/j.dynatmoce.2010.03.003
|
[11] |
Li L M, Jiang X, Chahine M T, et al. The mechanical energies of the global atmosphere in El Niño and La Niña years. J Atmos Sci, 2011, 68(12): 3072-3078. doi: 10.1175/JAS-D-11-072.1
|
[12] |
Pan Y F, Li L M, Jiang X, et al. Earth's changing global atmospheric energy cycle in response to climate change. Nat Commun, 2017, 8. DOI: 10.1038/ncomms14367.
|
[13] |
Ulbrich U, Speth P. The global energy cycle of stationary and transient atmospheric waves: Results from ECMWF analyses. Meteor Atmos Phys, 1991, 45(3): 125-138.
|
[14] |
Geng Q Z. Vorticity source, energy source and energy propagation of the teleconnection patterns in the upper troposphere of the Northern Hemisphere. J Appl Meteor Sci, 1996, 7(4): 414-420. http://qikan.camscma.cn/article/id/19960456
|
[15] |
Wei F Y. Progresses on climatological statistical diagnosis and prediction methods-In commenoration of the 50 anniversaries of CAMS estatblishment. J Appl Meteor Sci, 2006, 17(6): 736-742. doi: 10.3969/j.issn.1001-7313.2006.06.011
|
[16] |
Li L M, Ingersoll A P, Jiang X, et al. Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys Res Lett, 2007, 34(16). DOI: 10.1029/2007GL029985.
|
[17] |
Zhao B, Zhang B, Shi C X, et al. Comparison of the global energy cycle between Chinese reanalysis interim and ECMWF reanalysis. J Meteor Res, 2019, 33(3): 563-575. doi: 10.1007/s13351-019-8129-7
|
[18] |
Kong R, Wang J J, Liang F, et al. Applying scale decomposition method to verification of quantitative precipitation nowcasts. J Appl Meteor Sci, 2010, 21(5): 535-544. doi: 10.3969/j.issn.1001-7313.2010.05.003
|
[19] |
Saltsman B. Equations governing the energetics of the larger scales of atmospheric turbulence in the domain of wave number. J Meteor, 1957, 14(6): 513-523. doi: 10.1175/1520-0469(1957)014<0513:EGTEOT>2.0.CO;2
|
[20] |
Saltzman B, Teweles S. Further statistics on the exchange of kinetic energy between harmonic components of the atmospheric flow. Tellus, 1964, 16(4): 432-435. doi: 10.1111/j.2153-3490.1964.tb00180.x
|
[21] |
Shen X S, Wang J J, Li Z C, et al. Research and operational development of numerical weather prediction in China. J Meteor Res, 2020, 34(4): 675-698. doi: 10.1007/s13351-020-9847-6
|
[22] |
Zhang J, Sun J, Shen X S, et al. Key model technologies of CMA-GFS V4.0 and application to operational forecast. J Appl Meteor Sci, 2023, 34(5): 513-526. doi: 10.11898/1001-7313.20230501
|
[23] |
Huo Z H, Li X L, Chen J, et al. CMA global ensemble prediction using singular vectors from background field. J Appl Meteor Sci, 2022, 33(6): 655-667. doi: 10.11898/1001-7313.20220602
|
[24] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049.
|
[25] |
Li Z H, Peng J, Zhang L F, et al. Exploring the differences in kinetic energy spectra between the NCEP FNL and ERA5 datasets. J Atmos Sci, 2023, 81(2): 363-380.
|