Shao Qiduo, Tu Gang, Bueh Cholaw, et al. A statistical prediction for East Asian winter monsoon based on sea-ice-air system. J Appl Meteor Sci, 2024, 35(2): 168-181. DOI:  10.11898/1001-7313.20240204.
Citation: Shao Qiduo, Tu Gang, Bueh Cholaw, et al. A statistical prediction for East Asian winter monsoon based on sea-ice-air system. J Appl Meteor Sci, 2024, 35(2): 168-181. DOI:  10.11898/1001-7313.20240204.

A Statistical Prediction for East Asian Winter Monsoon Based on Sea-ice-air System

DOI: 10.11898/1001-7313.20240204
  • Received Date: 2023-11-15
  • Rev Recd Date: 2024-01-15
  • Publish Date: 2024-03-27
  • East Asian winter monsoon (EAWM) is one of the most crucial circulation systems in the Northern Hemisphere during winter, significantly influencing the weather and climate of East Asia. Therefore, predicting EAWM variations is considered as a key issue in winter climate prediction. The EAWM intensity index, as defined by Liu Shi (ISA) has shown a strong and consistent correlation with the interannual and interdecadal variations of winter temperature in Northeast China. However, the precursors influencing the EAWM (ISA) changed significantly with the decadal shift of the EAWM in the late 1990s. Predictions of EAWM have become less effective, and it is necessary to identify new predictors. Therefore, correlation analysis is conducted to identify the key factors influencing ISA based on the sea-ice-air system using reanalysis data produced by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR), as well as optimum interpolation SST V2 data from the National Oceanic and Atmospheric Administration (NOAA). EAWM precursor factors are established and their possible interactions are discussed. Factors are used to construct a statistical prediction model using multiple linear regression method, which is evaluated through cross-validation. Results reveal a significant positive correlation between ISA and the horseshoe-shaped sea surface temperature (SST) pattern over the tropical Pacific autumn, as well as SST over the Gulf Stream and the Eurasian mid-high latitude circulation pattern in stratosphere. ISA shows a stronger and more consistent negative correlation with the sea ice concentration of the Barents Sea than that of the Kara Sea and Laptev Sea. These precursors influence ISA through land/sea thermal differences, winter atmospheric circulation patterns such as the East Asian trough, Ural blocking, and the East Asian subtropical westerly jet. The aforementioned prediction model demostrates a good fit and can be utilized to predict EAWM intensity under the current interdecadal background, with a consistency in the anomaly sign rate of 81.8% (9/11) during 11-year hindcast from 2012 to 2022. An analysis of two years of prediction failures reveals that the winter Arctic Oscillation (AO) forecasts, as well as the abrupt transition of the AO from autumn to winter, should be considered in the EAWM prediction process.
  • Fig. 1  Correlation of winter 2 m temperature over East Asia to ISA(a) and ISH(b) during 1961-2022

    (· denotes passing the test of 0.01 level)

    Fig. 2  Correlation of ISA to SST in Sep-Oct(a) and 500 hPa height in Oct(b) during 1991-2020

    (· denotes passing the test of 0.05 level)

    Fig. 3  Correlation of ISA to SST in Sep-Oct during 1982-2011

    (· denotes passing the test of 0.05 level)

    Fig. 4  Correlation of ISA to sea ice concentration in Sep-Oct during 1982-2011

    (· denotes passing the test of 0.05 level)

    Fig. 5  Correlation of ISA to 150 hPa height in Sep-Oct during 1961-1990(a) and 1982-2011(b)

    (· denotes passing the test of 0.05 level)

    Fig. 6  Correlation of ISA to SST(a) and SLP(b) in winter during 1982-2011

    (· denotes passing the test of 0.05 level)

    Fig. 7  Correlation of ISST4 to SLP(a) and 500 hPa height(b) in winter during 1982-2011

    (· denotes passing the test of 0.05 level)

    Fig. 8  Correlation of -IBR to SLP(a), 500 hPa height(b) and 200 hPa zonal wind(c) in winter during 1982-2011

    (· denotes passing the test of 0.05 level)

    Fig. 9  Correlation of IZ150 to SLP(a) and 150 hPa height(b) in winter during 1982-2011

    (· denotes passing the test of 0.05 level)

    Table  1  Correlation coefficients and consistency of the anomaly sign between ISA and key SST indices during 1982-2011

    海温指数 范围 相关系数 符号一致率/%
    ISST1 黑潮延伸区(28°~36°N,170°E~172°W) 0.51Δ 70
    ISST2 新西兰东北侧(32°~24°S,176°E~170°W) 0.49Δ 80
    ISST3 Niño区(6°~14°N,130°~154°W) -0.56Δ 83
    ISST4 墨西哥湾区(34°~40°N,64°~72°W) 0.66Δ 77
    注:Δ表示相关系数达到0.05显著性水平。
    DownLoad: Download CSV

    Table  2  Correlation and consistency of the anomaly sign between ISA and prediction factors

    预测因子 ISA的相关系数(1982—2011年) 符号一致率(1982—2011年)/% 符号一致率(2012—2022年)/%
    ISST 0.58ΔΔ 76.7 63.6
    ISST4 0.66ΔΔ 73.3 63.6
    IZ150 0.51Δ 76.7 72.7
    IBR -0.63ΔΔ 73.3 72.7
    注:Δ和ΔΔ分别表示相关系数达到0.05和0.01显著性水平。
    DownLoad: Download CSV
  • [1]
    Ding Y H, Liu Y J, Liang S J, et al. Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. Acta Meteor Sinica, 2014, 72(5): 835-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201405003.htm
    [2]
    Han Y Q, Zhou L T, Huang R H. Characteristics of the extreme low temperature events in China during boreal winter and its relationship to East Asian winter monsoon. Clim Environ Res, 2021, 26(1): 1-17.
    [3]
    Sun S Q, Chen J. The variations of wind and thermodynamics fields in the South China Sea in summer during the anomaly winter monsoon. Clim Environ Res, 2000, 5(4): 400-416. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200004006.htm
    [4]
    Hu P, Chen W. The relationship between the East Asian winter monsoon anomaly and the subsequent summer monsoon onset over the South China Sea and the impact of ENSO. Clim Environ Res, 2018, 23(4): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201804002.htm
    [5]
    Zeng C, Hu S T, Liang J Y, et al. Preliminary researches on the relationship between anomalous winter monsoon circulation over East Asia and flood/drought from April to June in Guangdong. J Appl Meteor Sci, 2005, 16(5): 645-654. doi:  10.3969/j.issn.1001-7313.2005.05.011
    [6]
    Liu S, Bueh C, Tao S Y, et al. A study of the statistical prediction method for the East Asian winter monsoon intensity. Chinese J Atmos Sci, 2010, 34(1): 35-44. doi:  10.3878/j.issn.1006-9895.2010.01.04
    [7]
    Liu G, Song W L, Zhu Y F. A statistical prediction method for an East Asian winter monsoon index reflecting winter temperature changes over the Chinese mainland. Acta Meteor Sinica, 2013, 71(2): 275-285. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201302010.htm
    [8]
    Zhu Y F. An index of East Asian winter monsoon applied to description the Chinese mainland winter temperature changes. Acta Meteor Sinica, 2008, 66(5): 781-788. doi:  10.3321/j.issn:0577-6619.2008.05.011
    [9]
    Shao P C, Li D L. Classification and comparison of East Asian winter monsoon indices. J Meteor Sci, 2012, 32(2): 226-235. doi:  10.3969/2012jms.0018
    [10]
    Liu S. A method for determining intensity index of East Asian winter monsoon. Scientia Geographic Sinica, 2007, 27(Suppl Ⅰ): 10-18.
    [11]
    Liu S, Sui B, Tu G, et al. The East Asian winter monsoon background on the variation of winter air temperature in Northeast China. J Appl Meteor Sci, 2014, 25(1): 11-21. http://qikan.camscma.cn/article/id/20140102
    [12]
    Shao Q D, Tu G, Su L X, et al. Forecast test and result analysis of East Asian winter wind intensity in 2008-2019. Meteor Disaster Prev, 2022, 29(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JLQX202202001.htm
    [13]
    Shi X H, Xu X D, Xie L A. Interdecadal spatial-temporal change trend of East Asian winter monsoon in the last 40 years. Chinese J Atmos Sci, 2007, 31(4): 747-756. doi:  10.3878/j.issn.1006-9895.2007.04.19
    [14]
    Huang R H, Liu Y, Huangfu J L, et al. Characteristics and internal dynamical causes of the interdecadal variability of East Asian winter monsoon near the late 1990s. Chinese J Atmos Sci, 2014, 38(4): 627-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201404003.htm
    [15]
    Xiao X, Chen W, Fan G Z, et al. Possible external forcing factors for the interdecadal change in the East Asian winter monsoon around the late 1990s. Clim Environ Res, 2016, 21(2): 197-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201602008.htm
    [16]
    Jeong J H, Ou T H, Linderholm H W, et al. Recent recovery of the Siberian High intensity. J Geophys Res Atmos, 2011, 116(D23). DOI: 10.1029/2011JD015904.
    [17]
    Wang L, Chen W. The East Asian winter monsoon: Re-amplification in the mid-2000s. Chinese Sci Bull, 2014, 59(4): 430-436. doi:  10.1007/s11434-013-0029-0
    [18]
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77(3): 437-471. doi:  10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [19]
    Reynolds R W, Rayner N A, Smith T M, et al. An improved in situ and satellite SST analysis for climate. J Climate, 2002, 15(13): 1609-1625. doi:  10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
    [20]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. doi:  10.1002/qj.3803
    [21]
    Fan L J, Fu C B, Chen D L. Estimation of local temperature change scenarios in North China using statistical downscaling method. Chinese J Atmos Sci, 2007, 31(5): 887-897. doi:  10.3878/j.issn.1006-9895.2007.05.12
    [22]
    Michaelsen J. Cross-validation in statistical climate forecast models. J Appl Meteor Clim, 1987, 26(11): 1589-1600. doi:  10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2
    [23]
    He S P, Wang H J. An integrated East Asian winter monsoon index and its interannual variability. Chinese J Atmos Sci, 2012, 36(3): 523-538. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201203007.htm
    [24]
    Yuan F X, Mu J, Gao Y, et al. Effects of covering and uncovering date on seedling emergence of overwintering ginseng and American ginseng. J Appl Meteor Sci, 2023, 34(6): 729-738. doi:  10.11898/1001-7313.20230608
    [25]
    Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi:  10.11898/1001-7313.20220406
    [26]
    Guo A H, Wang C Z, Deng H H, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. doi:  10.11898/1001-7313.20220503
    [27]
    Yang S, Lau K M, Kim K M. Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J Climate, 2002, 15(3): 306-325. doi:  10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
    [28]
    Sato K, Inoue J, Watanabe M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ Res Lett, 2014, 9(8). DOI: 10.1088/1748-9326/9/8/084009.
    [29]
    Gao D Y, Wu B Y. Preliminary study on decadal oscillation and its oscillation source of the sea-ice-air system in the Northern Hemisphere. Chinese J Atmos Sci, 1998, 22(2): 137-144. doi:  10.3878/j.issn.1006-9895.1998.02.02
    [30]
    Wu B Y, Huang R H, Gao D Y. The impact of variation of sea-ice extent in the Kara Sea and the Barents Seas in winter on the winter monsoon over East Asia. Chinese J Atmos Sci, 1999, 23(3): 267-275. doi:  10.3878/j.issn.1006-9895.1999.03.02
    [31]
    Wu B Y, Bian L G, Zhang R H. Effects of the winter AO and the Arctic sea ice variations on climate variation over East Asia. Chinese J Polar Res, 2004, 16(3): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200403006.htm
    [32]
    Wu B Y, Su J Z, D'Arrigo R. Patterns of Asian winter climate variability and links to Arctic Sea ice. J Climate, 2015, 28(17): 6841-6858. doi:  10.1175/JCLI-D-14-00274.1
    [33]
    Wu B Y. Progresses in the impact study of Arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes. Chinese J Atmos Sci, 2018, 42(4): 786-805. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201804006.htm
    [34]
    Wu B Y, Huang R H, Gao D Y. Effects of variation of winter sea-ice area in Kara and Barents seas on East Asia winter monsoon. J Meteor Res, 1999, 13(2): 141-153.
    [35]
    Wu B Y, Su J Z, Zhang R H. Effects of autumn-winter Arctic sea ice on winter Siberian High. Chinese Sci Bull, 2011, 56(30): 3220-3228. doi:  10.1007/s11434-011-4696-4
    [36]
    Petoukhov V, Semenov V A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res, 2010, 115(D21). DOI: 10.1029/2009JD013568.
    [37]
    Baldwin M P, Thompson D W J, Shuckburgh E F, et al. Weather from the stratosphere?. Science, 2003, 301(5631): 317-319. doi:  10.1126/science.1085688
    [38]
    Shi N, Bueh C. A specific stratospheric precursory signal for the extensive and persistent extreme cold events in China. Chinese J Atmos Sci, 2015, 39(1): 210-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201501016.htm
    [39]
    Screen J A, Simmonds I. Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett, 2013, 40(5): 959-964. doi:  10.1002/grl.50174
    [40]
    Jhun J G, Lee E J. A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Climate, 2004, 17(4): 711-726. doi:  10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2
    [41]
    Honda M, Inoue J, Yamane S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett, 2009, 36(8). DOI: 10.1029/2008gl037079.
    [42]
    Zhang P, Wu Z W, Li J P, et al. Seasonal prediction of the northern and southern temperature modes of the East Asian winter monsoon: The importance of the Arctic sea ice. Climate Dyn, 2020, 54(7): 3583-3597.
    [43]
    Gong D Y, Wang S W, Zhu J H. East Asian winter monsoon and Arctic oscillation. Geophys Res Lett, 2001, 28(10): 2073-2076.
    [44]
    Tian B Q, Fan K, Yang H Q. East Asian winter monsoon forecasting schemes based on the NCEP's climate forecast system. Climate Dyn, 2018, 51(7): 2793-2805.
    [45]
    Guo Q Y. Relationship between East Asian winter monsoon variation and China temperature anomalies. J Appl Meteor Sci, 1994, 5(2): 218-225. http://qikan.camscma.cn/article/id/19940238
    [46]
    Zheng Q, Gao M. An objective prediction model of tropical cyclone formation in the Northwest Pacific. J Appl Meteor Sci, 2022, 33(5): 594-603. doi:  10.11898/1001-7313.20220507
    [47]
    Mi Q C, Gao X N, Li Y, et al. Application of deep learning method in drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi:  10.11898/1001-7313.20220109
    [48]
    Zhang Z C, Zhou F, Zhang H X, et al. Predication of typical winter circulation systems based on BCC_CSM1.1m model. J Appl Meteor Sci, 2023, 34(1): 27-38. doi:  10.11898/1001-7313.20230103
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(2)

    Article views (269) PDF downloads(50) Cited by()
    • Received : 2023-11-15
    • Accepted : 2024-01-15
    • Published : 2024-03-27

    /

    DownLoad:  Full-Size Img  PowerPoint