Zheng Jiao, Guo Xin, Fu Danhong, et al. Cloud microphysical properties of a typical spring hail event in Yunnan. J Appl Meteor Sci, 2024, 35(2): 182-195. DOI:  10.11898/1001-7313.20240205.
Citation: Zheng Jiao, Guo Xin, Fu Danhong, et al. Cloud microphysical properties of a typical spring hail event in Yunnan. J Appl Meteor Sci, 2024, 35(2): 182-195. DOI:  10.11898/1001-7313.20240205.

Cloud Microphysical Properties of a Typical Spring Hail Event in Yunnan

DOI: 10.11898/1001-7313.20240205
  • Received Date: 2023-11-17
  • Rev Recd Date: 2024-01-25
  • Publish Date: 2024-03-27
  • Synoptic conditions and microphysical formation mechanisms for hail events form the basis for investigating hail suppression technology. There are few relevant studies on hail formation mechanisms in spring in southern China. Most previous theories on hail formation are primarily based on numerical simulations and lack sufficient validation through observations. The atmospheric circulation, stratification, and hail microphysical properties of a typical spring hail event of Honghe in Yunnan on 28 March 2023 are investigated using meteorological and C-band dual-pol radar data. The hail formation mechanisms are compared with those derived from a cloud model with hail-bin microphysics. Results indicate that the synoptic conditions for the hail process are closely associated with the south branch of the westerly winds, which are caused by the blocking effect of the Tibetan Plateau, and the warm moist air carried by the southwesterlies around the western edge of the South Asian tropical high. Due to the relatively weak thermodynamics in spring, small-sized hail below 10 mm is predominant at the surface, with the maximum hail size reaching 20 mm. The microphysical structure of the hail cloud features a warm base and a highly active warm rain process. The dual-polarization radar products of differential reflectivity (ZDR), specific differential phase (KDP) and correlation coefficient indicate that during the initial stage of hail formation, the hail formation region consisted of spherical-shaped hail and supercooled raindrops. It suggests that hail embryos are formed through the freezing process of small-sized supercooled raindrops. As the hail embryos descend, the radar reflectivity increased and the particle shape tended to become discoid, indicating that the hail undergoes a growth process through collision with supercooled cloud water during the descent. The shape also changes from spherical to plate-like. it is because during the initial stage of hail formation, raindrops carry to the upper levels by updrafts are relatively small and had spherical shapes, causing their freezing process to form nearly spherical hail embryos. These spherical hail embryos collide with supercooled cloud water and form discoid hailstones during the falling process, which is consistent with shapes of hailstones collected at the surface. Numerical simulations show that hail embryos are primarily formed through homogeneous freezing of supercooled raindrops, and the growth of these embryos depends on accretion with supercooled cloud water, which is well consistent with products by dual-pol radar.
  • Fig. 1  Synoptical condition at 0800 BT 28 Mar 2023 (a)potential height (blue solid lines,unit:dagpm) and wind (barbs) at 500 hPa, (b)specific humidity (unit:g·kg-1) and wind (barbs) (the dark blue arrow denotes the dominant direction of southwesterlies at 700 hPa, the light blue solid line denotes 316 dagpm contour), (c)temperature and wind (barbs) at 850 hPa

    (different color arrows denote the cold/warm and dry/wet flow)

    Fig. 2  Dual-polarization products by Honghe radar for hail cloud at 1721 BT 28 Mar 2013

    (0 ℃ layer is located at 4225 m above the sea level)

    Fig. 3  The same as in Fig. 2, but for hail cloud at 1738 BT 28 Mar 2023

    Fig. 4  Simulation of the maximum updraft and downdraft for hail cloud on 28 Mar 2023

    Fig. 5  Simulation of the maximum hydrometeor content for hail cloud on 28 Mar 2023

    Fig. 6  Simulation of maximum number concentration of graupel/hail for various size bins

    Fig. 7  Simulation of radar reflectivity, hydrometeor mixing ratio and vertical velocity in x-z plane at the 12nd minute and the 18th minute for hail cloud of Honghe in Yunnan on 28 Mar 2013

    (the shaded denotes reflectivity the horizontal line denotes environmental temperature, unit:℃; unit of hydrometeor mixing ratios:g·kg-1;unit of vertical velocity:m·s-1, the solid line denotes updraft, and the dashed line denotes downdraft)

    Fig. 8  Simulation embryos production rate(a) and growth rate(b) of graupel/hail for hail cloud of Honghe in Yunnan on 28 Mar 2023

    Table  1  Comparison of observed and simulated hail cloud

    特征量 观测 模拟
    云顶高度/km 12 11.5
    云顶温度/℃ <-40 <-40
    云底温度/℃ >10 >10
    生命史/min >30 >30
    最大回波强度/dBZ 60 >60
    最大上升气流速度/(m·s-1) 24
    最大过冷雨水含量/(g·kg-1) 13
    地面最大冰雹尺度/mm 20 25
    DownLoad: Download CSV
  • [1]
    Foote G B,Knight C A.Hail:A Review of Hail Science and Hail Suppression.Meteor Monogr,Amer Meteor Soc,1979, 38:277.
    [2]
    Barge B L, Isaac G A. The shape of Alberta hailstones. J Rech Atmos, 1973, 1: 11-20.
    [3]
    Xu J L. Some hail research in China. Bull Amer Meteor Soc, 1983, 64(2): 124-132. doi:  10.1175/1520-0477(1983)064<0124:SHRIC>2.0.CO;2
    [4]
    Huang M Y, Xu H Y, Zhou L. 40 years' hail suppression in China. Clim Environ Res, 2000, 5(3): 318-328. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200003012.htm
    [5]
    Huang M Y, Shen Z L, Hong Y C. Advance of research on cloud and precipitation and weather modification in the latest half century. Chinese J Atmos Sci, 2003, 27(4): 536-551. doi:  10.3878/j.issn.1006-9895.2003.04.08
    [6]
    Wang A S, Huang M Y, Xu N Z, et al. Some research on the development of hail-cloud. Acta Meteor Sinica, 1980, 38(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198001006.htm
    [7]
    Zhang J, Li W L, Kang F Q, et al. Analysis and satellite monitor of a developing process of hail cloud. Plateau Meteor, 2004, 23(6): 758-763. doi:  10.3321/j.issn:1000-0534.2004.06.004
    [8]
    Liao X N, Yu X D, Yu B. Analysis on infrequent big hail event in Beijing Area. Meteor Mon, 2008, 34(2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200802003.htm
    [9]
    Zhang L N, Guo R, He N, et al. Characteristic analysis of a hail event in Beijing. Meteor Sci Technol, 2013, 41(1): 114-120. doi:  10.3969/j.issn.1671-6345.2013.01.022
    [10]
    Fan H, Yang Y S, Duan Y, et al. An observational analysis of the cloud structure of a severe convective hailstorm over the eastern foothill of Taihang Mountain. Acta Meteor Sinica, 2019, 77(5): 823-834. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201905003.htm
    [11]
    Li J H, Tian X, Yue Z G. Case study of hail cloud internal structure based on rocket sounding data. Chinese J Atmos Sci, 2020, 44(4): 748-760. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202004005.htm
    [12]
    Xie B G, Zhang Q H, Wang Y Q. Observed characteristics of hail size in four regions in China during 1980-2005. J Climate, 2010, 23(18): 4973-4982. doi:  10.1175/2010JCLI3600.1
    [13]
    Wang X L, Guo L X, Gao G Q, et al. Climatological characteristics and radar echo analysis of hail in Tangshan, Hebei. Meteor Mon, 2012, 38(3): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201203013.htm
    [14]
    Zhao W H, Yao Z Y, Jia S, et al. Characteristics of spatial and temporal distribution of hail duration in China during 1961-2015 and its possible influence factors. Chinese J Atmos Sci, 2019, 43(3): 539-551. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201903006.htm
    [15]
    Ni X, Muehlbauer A, Allen J T, et al. A climatology and extreme value analysis of large hail in China. Mon Wea Rev, 2020, 148(4): 1431-1447. doi:  10.1175/MWR-D-19-0276.1
    [16]
    Tang J, Guo X L, Chang Y, et al. Temporospatial distribution and trends of thunderstorm, hail, gale and heavy precipitation events over the Tibetan Plateau and associated mechanisms. J Climate, 2021, 34(24): 1-74.
    [17]
    Xu H B, Wang S W. Two-dimension hail cloud model. Acta Meteor Sinica, 1988, 46(2): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198802013.htm
    [18]
    Kong F Y, Huang M Y, Xu H Y. Three-dimensional numerical simulation of ice phase microphysics in cumulus clouds, part Ⅰ: Model establishment and ice phase parameterization. Chinese J Atmos Sci, 1990, 14(4): 441-453. doi:  10.3878/j.issn.1006-9895.1990.04.07
    [19]
    Hong Y C. Study on mechanism of hail formation and hail suppression with seeding. Acta Meteor Sinica, 1999, 57(1): 30-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB901.002.htm
    [20]
    Lin W S, Fan S J, Wang X M, et al. Numerical simulation of the hail cloud over mountainous terrain. Plateau Meteor, 2000, 19(1): 59-65. doi:  10.3321/j.issn:1000-0534.2000.01.008
    [21]
    Xu H B, Duan Y. The mechanism of hailstone's formation and the hail-suppression hypothesis: "Beneficial competition". Chinese J Atmos Sci, 2001, 25(2): 277-288. doi:  10.3878/j.issn.1006-9895.2001.02.14
    [22]
    Guo X L, Huang M Y, Hong Y C, et al. A study of three-dimensional hail-category hailstorm model, part Ⅰ: Model description and the mechanism of hail recirculation growth. Chinese J Atmos Sci, 2001, 25(5): 707-720. doi:  10.3878/j.issn.1006-9895.2001.05.13
    [23]
    Guo X L, Huang M Y. Hail formation and growth in a 3D cloud model with hail-bin microphysics. Atmos Res, 2002, 63(1/2): 59-99.
    [24]
    Liu S Y, Xiao H, Du B Y, et al. Three-dimensional numerical simulation of a strong convective storm in Beijing. Chinese J Atmos Sci, 2004, 28(3): 455-470. doi:  10.3878/j.issn.1006-9895.2004.03.12
    [25]
    Li X Y, Hong Y C. The improvement of 3D hail cloud model and case simulation. Acta Meteor Sinica, 2005, 63(6): 874-888. doi:  10.3321/j.issn:0577-6619.2005.06.005
    [26]
    Hu Z X, Guo X L, Li H Y, et al. Numerical simulation of a hybrid-type hailstorm in Munich and the mechanism of hail formation. Chinese J Atmos Sci, 2007, 31(5): 973-986. doi:  10.3878/j.issn.1006-9895.2007.05.20
    [27]
    Chen B J, Zheng K L, Guo X L. Numerical investigation on the growth of large hail in a simulated supercell thunderstorm. Clim Environ Res, 2012, 17(6): 767-778. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201206015.htm
    [28]
    Yin L, Ping F, Mao J H. Impact of cloud microphysical processes on the simulation of a hailstorm in East China. Atmos Res, 2019, 219: 36-56. doi:  10.1016/j.atmosres.2018.12.014
    [29]
    Guo X L, Fu D H, Li X Y, et al. Advances in cloud physics and weather modification in China. Adv Atmos Sci, 2015, 32(2): 230-249. doi:  10.1007/s00376-014-0006-9
    [30]
    Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428. doi:  10.11898/1001-7313.20220403
    [31]
    Zheng J, Han Q L, Xu Y, et al. Characteristics of dual-polarization radar in an artificial anti-hail operation. Desert Oasis Meteor, 2022, 16(6): 124-130. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX202206016.htm
    [32]
    Liu C W, Guo X L, Duan W, et al. Numerical simulation on the microphysical formation mechanism of a typical hailstorm process in Yunnan, Southwestern China. Chinese J Atmos Sci, 2021, 45(5): 965-980. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202105003.htm
    [33]
    Guo X, Guo X L, Chen B J, et al. Numerical simulation on the formation of large-size hailstones. J Appl Meteor Sci, 2019, 30(6): 651-664. doi:  10.11898/1001-7313.20190602
    [34]
    Guo X, Guo X L, Fu D H, et al. Storm splitting process and the associated mechanisms for a long-lived hailstorm. Atmos Res, 2023, 281. DOI: 10.1016/j.atmosres.2022.106472.
    [35]
    Wu J X, Hu Z Q, Xia F, et al. Hail size discrimination based on the Bayesian method. Acta Meteor Sinica, 2023, 81(5): 801-814. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202305009.htm
    [36]
    Yuan K, Li W J, Pang J. Hail identification technology in Eastern Hubei based on decision tree algorithm. J Appl Meteor Sci, 2023, 34(2): 234-245. doi:  10.11898/1001-7313.20230209
    [37]
    Yao Z Y, Tu Q, An L, et al. A summary of hail formation process and artificial hail suppression research. Acta Meteor Sinica, 2022, 80(6): 835-863. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202206001.htm
    [38]
    Browning K A, Ludlam F H, Macklin W C. The density and structure of hailstones. Q J R Meteor Soc, 1963, 89(379): 75-84. doi:  10.1002/qj.49708937905
    [39]
    Miller L J, Tuttle J D, Knight C A. Airflow and hail growth in a severe northern high Plains supercell. J Atmos Sci, 1988, 45(4): 736-762. doi:  10.1175/1520-0469(1988)045<0736:AAHGIA>2.0.CO;2
    [40]
    Tessendorf S A, Miller L J, Wiens K C, et al. The 29 June 2000 supercell observed during STEPS. Part Ⅰ: Kinematics and microphysics. J Atmos Sci, 2005, 62(12): 4127-4150. doi:  10.1175/JAS3585.1
    [41]
    Sulakevelize G K, Binilashvei N S, Lapcheva V F. Formation of Precipitation and Modification of Hail Processes. Press of Hydrometeorology, 1967.
    [42]
    Cotton W, Anthes R. Storm and Cloud Dynamics. The International Geophysics Series, 1992.
    [43]
    Knight C A, Knight N C, Dye J E, et al. The mechanism of precipitation formation in northeastern Colorado cumulus Ⅰ. Observations of the precipitation itself. J Atmos Sci, 1974, 31(8): 2142-2147. doi:  10.1175/1520-0469(1974)031<2142:TMOPFI>2.0.CO;2
    [44]
    Zhou L, Chen B J, Li Z H, et al. A numerical simulation of hailstorm accumulation zone and hail formation. Chinese J Atmos Sci, 2001, 25(4): 536-550. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200104009.htm
    [45]
    Chen B J, Xiao H. Numerical simulation of hail formation and growth in a storm with low supercooled rain water content and the effect of AgI seeding on hail suppression. Chinese J Atmos Sci, 2007, 31(2): 273-290. doi:  10.3878/j.issn.1006-9895.2007.02.09
    [46]
    Hong Y C, Xiao H, Li H Y, et al. Studies on microphysical processes in hail cloud. Chinese J Atmos Sci, 2002, 26(3): 421-432. doi:  10.3878/j.issn.1006-9895.2002.03.13
    [47]
    Liu X L, Liu J X, Zhang S L, et al. Hail forecast based on factor combination analysis method and sounding data. J Appl Meteor Sci, 2014, 25(2): 168-175. doi:  10.3969/j.issn.1001-7313.2014.02.006
    [48]
    Lan Y, Zheng Y G, Mao D Y, et al. Classification and satellite nephogram features of hail weather in North China. J Appl Meteor Sci, 2014, 25(5): 538-549. http://qikan.camscma.cn/article/id/20140503
    [49]
    Min J J, Liu H Z, Cao X Z, et al. The mesoscale characteristics and causes of a severe hail event in Tianjin. J Appl Meteor Sci, 2011, 22(5): 525-536. doi:  10.3969/j.issn.1001-7313.2011.05.002
    [50]
    Li Y, Duan X. Diagnostic analysis of moist potential vorticity for hail in southern Yunnan. J Appl Meteor Sci, 2000, 11(2): 242-248. doi:  10.3969/j.issn.1001-7313.2000.02.015
    [51]
    Liu L P, Xu B X, Wang Z J, et al. Study of hail with C-band dual linear polarization radar. Chinese J Atmos Sci, 1992, 16(3): 370-376. doi:  10.3878/j.issn.1006-9895.1992.03.14
    [52]
    Su D B, Ma J L, Zhang Q, et al. Preliminary research on method of hail detection with X band dual linear polarization radar. Meteor Mon, 2011, 37(10): 1228-1232. doi:  10.7519/j.issn.1000-0526.2011.10.005
    [53]
    Zhu J J, Diao X G, Huang X S. Study of CINRAD/SA products for a hail storm. J Appl Meteor Sci, 2004, 15(5): 579-589. doi:  10.3969/j.issn.1001-7313.2004.05.008
    [54]
    Hu S, Luo C, Zhang Y, et al. Doppler radar features of severe hailstorms in Guangdong Province. J Appl Meteor Sci, 2015, 26(1): 57-65. doi:  10.11898/1001-7313.20150106
    [55]
    Chen Q P, Chen Q C, Feng J Q, et al. Analysis of two severe hail supercell storms on 11 April 2012. Meteor Mon, 2015, 41(1): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201501003.htm
    [56]
    Wang J, Liu L P. The evaluation of WSR-88D hail detection algorithm over Guizhou Region. J Appl Meteor Sci, 2011, 22(1): 96-106. http://qikan.camscma.cn/article/id/20110110
    [57]
    Zhang B X, Li G C, Liu L P, et al. Identification method of hail weather based on fuzzy-logical principle. J Appl Meteor Sci, 2014, 25(4): 415-426. doi:  10.3969/j.issn.1001-7313.2014.04.004
    [58]
    Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204. doi:  10.11898/1001-7313.20220206
    [59]
    Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28. doi:  10.11898/1001-7313.20220102
    [60]
    Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191. doi:  10.11898/1001-7313.20220205
    [61]
    Shi B L, Wang H Y, Liu L P. Coverage capacity of hail detection for Yunnan Doppler weather radar network. J Appl Meteor Sci, 2018, 29(3): 270-281. doi:  10.11898/1001-7313.20180302
    [62]
    Jiang Y, Zhu K Y, Zhang J. Microphysical process of hail cloud in Guizhou and numerical simulation research on its dynamic developing mechanism. Meteor Mon, 2016, 42(8): 920-933. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201608002.htm
    [63]
    Kang F Q, Zhang Q, Lu S H. Validation and development of a new hailstone formation theory: Numerical simulations of a strong hailstorm occurring over the Qinghai-Tibetan Plateau. J Geophys Res, 2007, 112(D2). DOI: 10.1029/e2005jd006227.
    [64]
    Tang J, Guo X L, Chang Y, et al. Long-term variations of clouds and precipitation on the Tibetan Plateau and its subregions, and the associated mechanisms. Int J Climatol, 2022, 42(16): 9003-9022.
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(1)

    Article views (435) PDF downloads(109) Cited by()
    • Received : 2023-11-17
    • Accepted : 2024-01-25
    • Published : 2024-03-27

    /

    DownLoad:  Full-Size Img  PowerPoint