[1]
|
Zhang Y,Xu Y L,Dong W J,et al.A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys Res Lett,2006, 33(24).DOI: 10.1029/2006GL027229.
|
[2]
|
Lenderink G, van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci, 2008, 1(8): 511-514. doi: 10.1038/ngeo262
|
[3]
|
Chen S, Gao J Y, Huang L N, et al. Decadal variation characteristics of South China pre-flood season persistent rainstorm and its mechanism. J Appl Meteor Sci, 2017, 28(1): 86-97. doi: 10.11898/1001-7313.20170108
|
[4]
|
|
[5]
|
Shi W R, Li X, Zeng M J, et al. Multi-model comparison and high-resolution regional model forecast analysis for the "7·20" Zhengzhou severe heavy rain. Trans Atmos Sci, 2021, 44(5): 688-702.
|
[6]
|
|
[7]
|
|
[8]
|
Bao X H, Xia R D, Luo Y L, et al. Comparative analysis on meteorological and hydrological rain gauge observations of the extreme heavy rainfall event in Henan Province during July 2021. J Appl Meteor Sci, 2022, 33(6): 668-681. doi: 10.11898/1001-7313.20220603
|
[9]
|
Zhang E H, Cao Y C, Wang X Y, et al. Characteristics of water vapor in a heavy rainstorm based on ground-based GPS measurements in Beijing. Meteor Sci Technol, 2015, 43(6): 1157-1163. doi: 10.3969/j.issn.1671-6345.2015.06.023
|
[10]
|
|
[11]
|
|
[12]
|
|
[13]
|
|
[14]
|
|
[15]
|
|
[16]
|
|
[17]
|
Fu S M, Zhang Y C, Wang H J, et al. On the evolution of a long-lived mesoscale convective vortex that acted as a crucial condition for the extremely strong hourly precipitation in Zhengzhou. J Geophys Res Atmos, 2022, 127(11). DOI: 10.1029/2021JD036233.
|
[18]
|
|
[19]
|
Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101
|
[20]
|
|
[21]
|
Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604
|
[22]
|
Yin L, Ping F, Mao J H, et al. Analysis on precipitation efficiency of the "21.7" Henan extremely heavy rainfall event. Adv Atmos Sci, 2023, 40(3): 374-392. doi: 10.1007/s00376-022-2054-x
|
[23]
|
Zhu K F, Zhang C R, Xue M, et al. Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking "21·7" extreme rainfall event in Henan Province, China. Science China Earth Sciences, 2022, 52(10): 1905-1928. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202210004.htm
|
[24]
|
|
[25]
|
|
[26]
|
Zhu Q G, Lin J R, Shou S W, et al Principles and Methods of Meteorology(3rd Ed). Beijing: China Meteorological Press, 2000.
|
[27]
|
|
[28]
|
|
[29]
|
|
[30]
|
|
[31]
|
Duan Y X, Li D Q, Ji Y M, et al. Analysis of strong precipitation in the urban area of Shenyang under the Northeast Cold Vortex background. J Meteor Environ, 2022 38(4): 1-10. doi: 10.3969/j.issn.1673-503X.2022.04.001
|
[32]
|
Ren L, Ma G Z, Sun Q. Analysis of mesoscale and cloud physical characteristics of a cold vortex rainstorm in Northeast China. Desert Oasis Meteor, 2021, 15(6): 31-39. doi: 10.12057/j.issn.1002-0799.2021.06.005
|
[33]
|
Sun L, Dong W, Yao M, et al. A diagnostic analysis of the causes of the torrential rain and precipitation asymmetric distribution of Typhoon Bolaven(2012). Acta Meteor Sinica, 2015, 73(1): 36-49. doi: 10.3969/j.issn.1005-0582.2015.01.008
|
[34]
|
|
[35]
|
|
[36]
|
Yang W D. Technical Manual of Meteorological Disaster Prevention in Heilongjiang Province. Beijing: China Meteorological Press, 2017: 2-5.
|
[37]
|
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Q J R Meteor Soc, 2020, 146(730): 1999-2049. doi: 10.1002/qj.3803
|
[38]
|
Zhang F H, Yang S N, Hu Y, et al. Water vapor characteristics of the July 2023 severe torrential rain in North China. Meteor Mon, 2023, 49(12): 1421-1434. doi: 10.7519/j.issn.1000-0526.2023.103003
|
[39]
|
Huang Y J, Wu W, McFarquhar G M, et al. Microphysical processes producing high ice water contents(HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Dominant role of secondary ice production. Atmos Chem Phys, 2022, 22(4): 2365-2384. doi: 10.5194/acp-22-2365-2022
|
[40]
|
Huang Y J, Cui X P, Wang Y P. Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China. Atmos Ocean Sci Lett, 2016, 9(2): 90-98. doi: 10.1080/16742834.2016.1139436
|
[41]
|
|
[42]
|
Ge L L, Lü G Z, Zhao G X, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. doi: 10.11898/1001-7313.20230409
|
[43]
|
Wang J, Zheng L N, Wang H, et al. Statistical characteristics and regional differences of raindrop size distribution during 6 typhoon rainstorms in Shandong. J Appl Meteor Sci, 2023, 34(4): 475-488. doi: 10.11898/1001-7313.20230408
|
[44]
|
|
[45]
|
|
[46]
|
|
[47]
|
Han F, Long M S, Li Y A, et al. The application of recurrent neural network to nowcasting. J Appl Meteor Sci, 2019, 30(1): 61-69. doi: 10.11898/1001-7313.20190106
|
[48]
|
Han F, Yang L, Zhou C X, et al. An experimental study of the short-time heavy rainfall event forecast based on ensemble learning and sounding data. J Appl Meteor Sci, 2021, 32(2): 188-199. doi: 10.11898/1001-7313.20210205
|
[49]
|
Li H Q, Cui X P, Zhang D L. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region. Mon Wea Rev, 2017, 145(1): 181-197. doi: 10.1175/MWR-D-16-0115.1
|