Wang Xiujuan, Qi Yanbin, Jiang Xiaoling, et al. Characteristics of precipitation cloud system in Northeast China cold vortex at Changbai Mountain foothills. J Appl Meteor Sci, 2024, 35(3): 272-284. DOI:  10.11898/1001-7313.20240302.
Citation: Wang Xiujuan, Qi Yanbin, Jiang Xiaoling, et al. Characteristics of precipitation cloud system in Northeast China cold vortex at Changbai Mountain foothills. J Appl Meteor Sci, 2024, 35(3): 272-284. DOI:  10.11898/1001-7313.20240302.

Characteristics of Precipitation Cloud System in Northeast China Cold Vortex at Changbai Mountain Foothills

DOI: 10.11898/1001-7313.20240302
  • Received Date: 2024-01-05
  • Rev Recd Date: 2024-03-06
  • Publish Date: 2024-05-31
  • Utilizing the microwave radiometer data and hourly rainfall data in Jilin Cloud Physics Field Scientific Test Base, CMA, the precipitation cloud system in Northeast China cold vortex at the Changbai Mountain foothills is analyzed. Rainfall events are divided into heavy precipitation, moderate intensity precipitation, and weak precipitation. Assisted by ERA5 reanalysis data, results show that the middle and high clouds appear first by 6 hours before the precipitation occurrence at the Changbai Mountain foothills. Water vapor and cloud water are both important for the occurrence and maintenance of heavy precipitation induced by Northeast China cold vortex. The cloud liquid water appears approximately with the height of 5-6 km by 4 hours before the precipitation induced by Northeast China cold vortex. Two hours before precipitation, the cloud descendes sharply. During one hour after the three types precipitation occurrence, the vapor density respectively leap to 13-14 g·m-3, 9-12 g·m-3, and 7-9 g·m-3 below 1 km height. Integrated water vapor during three types of precipitation increase to 5.8 cm, 4.2 cm, and 3.5 cm, respectively. The water vapor increases 5 hours before the occurrence of strong precipitation below 6 km height. The vapor density increases to 12-14 g·m-3 below 1 km height. There is cloud liquid water with 1.0-1.6 g·m-3 at the height of 5-6 km in the temperature layers of -5--10 ℃, which contributes to the formation of ice and snow crystals. Six hours before the heavy precipitation, moderate intensity precipitation, and weak precipitation, the integrated cloud liquid water are 4.2-4.8 mm, 3.0 mm, 2.3 mm, respectively. There are middle and high clouds in the temperature layers of -6 ℃ and -16 ℃. The height of cloud base drops sharply from 5.5-7 km to the ground, while the relative humidity drops sharply. These characteristics continue until the beginning of heavy rainfall. For moderate and weak precipitation induced by Northeast China cold vortex, there is middle cloud before the precipitation, and the cloud liquid water is 0.4-0.8 g· m-3 at the height of 5-6 km. However, there is no characteristic of water vapor jumping or relative humidity decreasing.Through the study of these physical quantity characteristics, indicators with indicative and predictive significance for precipitation induced by Northeast China cold vortex have been established.
  • Fig. 1  Vertical distribution of water vapor density (unit:g·m-3) for heavy precipitation, moderate intensity precipitation and weak precipitation induced by Northeast China cold vortex at Jingyu Station in 2020

    Fig. 2  Vertical distribution of integrated water vapor for heavy precipitation, moderate intensity precipitation and weak precipitation induced by Northeast China cold vortex at Jingyu Station in 2020

    Fig. 3  Vertical distribution of cloud liquid water (the shaded) and temperature layers (the isoline, unit:℃) for heavy precipitation, moderate intensity precipitation and weak precipitation induced by Northeast China cold vortex at Jingyu Station in 2020

    Fig. 4  Vertical distribution of integrated cloud liquid water for heavy precipitation, moderate intensity precipitation and weak precipitation induced by Northeast China cold vortex during at Jingyu Station in 2020

    Fig. 5  Vertical distribution of integrated cloud liquid water and integrated water vapor, conversion rate of water vapor to cloud liquid water for heavy precipitation, moderate intensity precipitation, weak precipitation induced by Northeast China cold vortex at Jingyu Station in 2020

    Fig. 6  Height of cloud base and relative humidity for heavy precipitation, moderate intensity precipitation and weak precipitation induced by Northeast China cold vortex at Jingyu Station in 2020

    Fig. 7  Integrated atmospheric moisture flux at 0800 BT 13 Aug 2020 (the black dot denotes location of observation site)

    Fig. 8  Vertical section of potential vorticity(the isoline, unit:PVU), pseudo-equivalent potential temperature (the shaded) and vertical velocity along 127°E at 0800 BT 13 Aug 2020 (the brown solid line denotes the frontal zone)

    Fig. 9  Height-time distribution of ice water content, snow water content, cloud liquid water content, rain water content at Jingyu Station from 0600 BT 13 Aug to 0100 14 Aug in 2020 (the isoline denotes temperature, unit:℃)

    Table  1  Three-type precipitation induced by Northeast China cold vortex at Jingyu Station in 2020

    类别 分类编号 降水起止时间
    强降水 1 08-09T10:00—18:00
    2 08-13T12:00—14T01:00
    中等强度降水 1 05-17T02:00—07:00
    2 05-24T01:00—08:00
    3 07-19T11:00—20T00:00
    4 08-03T23:00—04T02:00
    5 08-04T16:00—20:00
    6 08-15T16:00—20:00
    7 09-16T01:00—09:00
    8 09-16T18:00—21:00
    9 09-19T01:00—02:00
    弱降水 1 05-10T16:00—17:00
    2 05-12T04:00—13:00
    3 05-13T03:00—04:00
    4 05-15T18:00—20:00
    5 05-18T10:00—17:00
    6 06-01T03:00—14:00
    7 06-15T01:00—02:00
    8 08-11T18:00—19:00
    9 08-14T19:00—20:00
    10 09-09T15:00—10T05:00
    11 09-22T14:00—18:00
    12 10-01T17:00—21:00
    DownLoad: Download CSV
  • [1]
    Sun L, An G, Lian Y, et al. A study of the persistent activity of northeast cold vortex in summer and its genral circulation anomaly charecteristics. Acta Meteor Sinica, 2000, 58(6): 704-714. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200006005.htm
    [2]
    Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305
    [3]
    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [4]
    Sun L, Lian Y, Bai L S. Analysis of a sudden rainstorm in Northeast China. Plateau Meteor, 1995, 14(4): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX504.012.htm
    [5]
    Ying S, Yuan D Y, Li S F. Comparative analysis of severe convective weather characteristics in different stages of Northeast China cold vortex. J Meteor Environ, 2014, 30(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201404002.htm
    [6]
    Wang P, Shen X Y, Gao S T. A numerical study and rainfall analysis of a cold vortex process over Northeast China. Chinese J Atmos Sci, 2012, 36(1): 130-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201201011.htm
    [7]
    Yang Y T, Cui X P, Zou Q L. Moisture sources tracking of a cold vortex rainstorm over Northeast China using FLEXPART. Atmos Sci Lett, 2022, 23(3). DOI: 10.1002/asl.1123.
    [8]
    Wang Z H, Li Q, Chu Y L, et al. Environmental thermal radiation interference on atmospheric brightness temperature measurement with ground-based K-band microwave radiometer. J Appl Meteor Sci, 2014, 25(6): 711-721. http://qikan.camscma.cn/article/id/20140607
    [9]
    Liu X L, Liu D S, Guo L J, et al. The observational precision of domestic MWP967KV ground-based microwave radiometer. J Appl Meteor Sci, 2019, 30(6): 731-744. doi:  10.11898/1001-7313.20190609
    [10]
    Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi:  10.11898/1001-7313.20230304
    [11]
    Lin X M, Wei Y H, Zhang N, et al. Construction of air-sounding-profile system based on foundation-remote-sensing equipment. J Appl Meteor Sci, 2022, 33(5): 568-580. doi:  10.11898/1001-7313.20220505
    [12]
    Heggli M, Rauber R M, Snider J B. Field evaluation of a dual-channel microwave radiometer designed for measurements of integrated water vapor and cloud liquid water in the atmosphere. J Atmos Oceanic Technol, 1987, 4(1): 204-213. doi:  10.1175/1520-0426(1987)004<0204:FEOADC>2.0.CO;2
    [13]
    Ruffieux D, Nash J, Jeannet P, et al. The COST 720 temperature, humidity, and cloud profiling campaign: TUC. Meteorologische Zeitschrift, 2006, 15(1): 5-10. doi:  10.1127/0941-2948/2006/0095
    [14]
    Revercomb H E, Turner D D, Tobin D C, et al. The ARM program's water vapor intensive observation periods: Overview, initial accomplishments, and future challenges. Bull Amer Meteor Soc, 2003, 84(2): 217-236. doi:  10.1175/BAMS-84-2-217
    [15]
    Löhnert U, Crewell S, Simmer C, et al. Profiling cloud liquid water by combining active and passive microwave measurements with cloud model statistics. J Atmos Oceanic Technol, 2001, 18(8): 1354-1366. doi:  10.1175/1520-0426(2001)018<1354:PCLWBC>2.0.CO;2
    [16]
    Zhu Y J, Hu C D, Zhen J M, et al. Application of microwave radiometer in weather modification research. Acta Sci Nat Univ Pekin, 1994, 30(5): 597-606. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ405.011.htm
    [17]
    Chen H B. Using high frequency microwave passive remote sensing to detect the atmosphere. Remote Sens Technol Appl, 1999, 14(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS902.008.htm
    [18]
    Lei H C, Wei Z, Shen Z L, et al. Detection of water vapor and cloud liquid water before rainfall by microwave radiometer. J Appl Meteor Sci, 2001, 12(Suppl Ⅰ): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1009.htm
    [19]
    Li W B, Liu Y H, Zhu Y J, et al. An application of the measurements by the ground-based microwave radiometers in HUBEX. Clim Environ Res, 2001, 6(2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200102010.htm
    [20]
    Liu Z X, Dai Z J, Peng J X, et al. Mechanism analysis of a local strong hail based on LAPS. Torrential Rain Disasters, 2009, 28(4): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200904005.htm
    [21]
    Huang Z Y, Xu G R, Wang X F, et al. Applications of ground-based microwave radiation data to short-term rainstorm and potential forecast. J Appl Meteor Sci, 2013, 24(5): 576-584. http://qikan.camscma.cn/article/id/20130507
    [22]
    Ao X, Wang Z H, Xu G R, et al. Apply of ground-based microwave radiometer observation in precipitation events. Torrential Rain Disasters, 2011, 30(4): 358-365. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201104012.htm
    [23]
    Huang Z Y, Zhou Z M, Xu G R, et al. Monitoring application of hailstorm event with the observation of wind profile radar and ground-based microwave radiometer. Plateau Meteor, 2015, 34(1): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201501029.htm
    [24]
    Wang X K, Xu G R, Yuan K. Different characteristic analysis of inversion parameters for heavy rainfall and weak rainfall by microwave radiometer data. Torrential Rain Disasters, 2016, 35(3): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201603005.htm
    [25]
    Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi:  10.11898/1001-7313.20230607
    [26]
    Sun L, Zheng X Y, Wang Q. Temporal and spatial distribution characteristics of northeast cold vortex and its relationship with large circulation system in East Asia. J Appl Meteor Sci, 1994, 5(3): 297-303. http://qikan.camscma.cn/article/id/YYQX403005
    [27]
    Zheng X Y, Zhang T Z, Bai R H. Northeast Rainstorm. Beijing: China Meteorological Press, 1992: 129-137.
    [28]
    Xu H L, Zheng J F, Jiang T, et al. Analysis and research on water vapor condition of thunderstorm precipitation in Urumqi and Chengdu Airports. Meteor Mon, 2020, 46(11): 1440-1449. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202011005.htm
    [29]
    Qi Y B, Guo X L, Jin D Z. An observational study of macro/microphysical structures of convective rainbands of a cold vortex over Northeast China. Chinese J Atmos Sci, 2007, 31(4): 621-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704006.htm
    [30]
    Zhang D G, Guo X L, Fu D H, et al. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during august-september 2003. Chinese J Atmos Sci, 2007, 31(4): 596-610. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200704004.htm
    [31]
    Li C, Jiang Y S, Jiang D, et al. Observation and analysis of a hailstorm event based on multi-source data. Meteor Mon, 2017, 43(9): 1084-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201709006.htm
    [32]
    Nie H H, Wang W, Guo X J, et al. Distribution characteristics of typical stratiform clouds water vapor and liquid water in Tianjin Area based on airborne microwave radiometer. J Arid Meteor, 2023, 41(4): 599-606. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202304009.htm
    [33]
    Duan Y, Li Y C, Zhao Y M. A case study of a convective storm over the North China Plain. Meteor Mon, 1999, 25(11): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199911004.htm
    [34]
    Li Y Y, Fang L X, Kou X W. Principle and standard of auto-observation cloud classification for satellite, ground measurements and model. Chinese J Geophys, 2014, 57(8): 2433-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201408005.htm
    [35]
    Wu G X, Cai Y P, Tang X J. Development of wet potential vorticity and inclined vorticity. Acta Meteor Sinica, 1995, 53(4): 387-405. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm
    [36]
    Wang X J, Jiang Z B, Ma X H, et al. Causes analysis of heavy rainfall in 2018 in Jilin Province. J Meteor Environ, 2020, 36(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202002001.htm
    [37]
    Liu Y, Wang D H, Zhang Z F, et al. A comprehensive analysis of the structure of a Northeast China-cold-vortex and its characteristics of evolution. Acta Meteor Sinica, 2012, 70(3): 354-370. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201203003.htm
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (487) PDF downloads(80) Cited by()
    • Received : 2024-01-05
    • Accepted : 2024-03-06
    • Published : 2024-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint