Zhou Renran, Wang Gaili, Gao Yunyi. Raindrop size distribution characteristics of summer precipitation at Xinmin, Northeast China. J Appl Meteor Sci, 2024, 35(3): 337-349. DOI:  10.11898/1001-7313.20240307.
Citation: Zhou Renran, Wang Gaili, Gao Yunyi. Raindrop size distribution characteristics of summer precipitation at Xinmin, Northeast China. J Appl Meteor Sci, 2024, 35(3): 337-349. DOI:  10.11898/1001-7313.20240307.

Raindrop Size Distribution Characteristics of Summer Precipitation at Xinmin, Northeast China

DOI: 10.11898/1001-7313.20240307
  • Received Date: 2024-03-28
  • Rev Recd Date: 2024-04-28
  • Publish Date: 2024-05-31
  • Raindrop size distribution (DSD) is a basic characteristic for describing the microphysical process of rainfall. A better understanding of DSD and its variations is not only crucial for improving microphysical parameterization schemes in numerical weather forecasting models, but also important for radar quantitative precipitation estimation. It shows that DSD characteristics are not only related to geographical location, climate, terrain, and humidity, but also vary among different rainfall types and rain rate in the same region. At present, there are still some uncertainties and limitations in the understanding of microphysical characteristics of rainfall in Northeast China, and the microphysical parameterization scheme still lacks accurate description of rainfall microphysical process. Based on observations of the precipitation phenomenon instrument at Xinmin of Liaoning Province in summer, DSD characteristics of different rainfall rate classes are investigated and compared with those of other regions in China. Spectral width of DSD increases with an increase in rain rate (R). The spectral width of raindrops is close to 8 mm when R>20 mm·h-1. Small drops are predominant in rainfall of Xinmin, but moderate drops make the most significant contribution to total rainfall. Observed DSD samples are also categorized into convective and stratiform rainfall types. The convective rainfall at Xinmin has large raindrop size and low raindrop concentration. Convective rainfall can be identified as continental clusters, with average Dm and lgNw of 2.14 mm and 3.40, while average Dm and lgNw of stratiform rainfall at Xinmin are 1.23 mm and 3.30, respectively. The μ-Λ and Z-R relationships for convective and stratiform rainfall at Xinmin are thus fitted. Fitted μ-Λ relationship at Xinmin is similar to that in other regions fitted with data observed by PARSIVEL disdrometers, but different from the empirical relationship fitted from two-dimensional video raindrop spectrometers (2DVD) observations in other regions, and the difference of instruments is the main cause for the discrepancies of μ-Λ relationships. Compared with East China and North China, Xinmin rainfall has larger Dm, lower lgNw, and higher exponent value of fitted Z-R power-law relationship for convective rainfall, indicating that the radar reflectivity factor at Xinmin increases more rapidly with the increase of rain rate. Using the Z-R empirical formula fitted at Xinmin can reduce the error of radar-based quantitative precipitation estimation. Results would contribute to the understanding of microphysical characteristics of rainfall in Northeast China and the accuracy of radar quantitative precipitation estimation.
  • Fig. 1  Raindrop size distributions after quality control(a) and 6-minute accumulated rainfall before and after quality control(b) for precipitation phenomenon instrument at Xinmin on 4 Aug 2020

    Fig. 2  Relative contributions of different rain intensities to accumulated rain amount (the solid line) and accumulated rain duration (the column)

    Fig. 3  Average raindrop size distribution for different rainfall intensities (unit: mm·h-1)

    Fig. 4  Relative contribution of different diameters to total raindrop concentration and rainfall intensity

    Fig. 5  Occurrence frequency of Dm and lgNw for stratiform rainfall and convective rainfall

    Fig. 6  Scatter plot and fitting curves of μ-Λ

    Fig. 7  Scatter plots and fitting curves of Z-R for stratiform rainfall and convective rainfall

    Table  1  Cumulative rainfall, relative deviations, and correlation coefficients of selected 17 rainfall days by two instruments (correlation coeffients passing the test of 0.01 level)

    序号 降雨日 累积雨量/mm 相对偏差/% 相关系数
    雨量计 降水现象仪
    1 2019-07-11 28.9 27.3 -6 0.99
    2 2019-07-30 47.4 38.6 -19 0.98
    3 2019-08-03 111.6 93.6 -16 0.98
    4 2019-08-11 46.3 41.8 -10 0.99
    5 2019-08-14 68.3 51.7 -24 0.97
    6 2020-08-04 60.5 51.0 -16 0.99
    7 2020-08-19 62.0 43.6 -30 0.96
    8 2020-08-25 78.9 60.2 -24 0.99
    9 2020-08-27 46.3 32.5 -30 0.99
    10 2021-07-30 28.9 31.2 8 0.96
    11 2021-08-11 26.0 21.6 -17 0.96
    12 2021-08-16 29.8 21.2 -29 0.94
    13 2022-07-03 18.8 18.7 0 0.99
    14 2022-07-07 69.6 53.1 -23 0.96
    15 2022-08-13 17.1 15.4 -9 0.98
    16 2023-07-09 27.6 24.9 -9 0.99
    17 2023-08-22 21.4 15.1 -29 0.95
    DownLoad: Download CSV

    Table  2  Precipitation parameters and Gamma model parameters for different rainfall intensities

    参数 雨强/(mm·h-1)
    [0.1, 2) [2, 5) [5, 10) [10, 20) [20, 50) [50, 181.7)
    Nt/m-3 106.3 264.7 335.4 437.6 659.7 1309.0
    W/(g·m-3) 0.035 0.158 0.315 0.593 1.216 2.963
    Z/dBZ 22.6 31.7 37.2 41.8 47.3 53.3
    Dm/mm 1.190 1.460 1.753 2.032 2.429 2.880
    lgNw 3.152 3.453 3.434 3.452 3.454 3.545
    μ 1.422 1.862 1.371 1.530 1.497 1.690
    Λ/mm-1 4.557 4.015 3.065 2.722 2.264 1.976
    N0/(m-3·mm-1) 5372.7 11009.7 5777.0 5229.7 3973.8 3821.8
    DownLoad: Download CSV

    Table  3  Precipitation estimation error for different Z-R relationships at Xinmin

    降雨类型 拟合公式 标准化平均偏差/% 标准化绝对偏差/%
    对流云降雨 Z=300R1.40(经验公式)[41] 26.26 36.84
    Z=733.55R1.22(北京)[9] 8.18 36.7
    Z=230.85R1.34(南京)[40] 82.63 84.53
    Z=180.93R1.61 (新民) 4.51 24.53
    层状云降雨 Z=200R1.60(经验公式)[41] 17.71 41.53
    Z=247.19R1.35(北京)[9] 14.09 35.44
    Z=193.73R1.54(南京)[40] 20.86 38.94
    Z=239.03R1.44 (新民) 11.49 38.22
    DownLoad: Download CSV
  • [1]
    Milbrandt J A, Yau M K. A multimoment bulk microphysics parameterization. Part Ⅰ: Analysis of the role of the spectral shape parameter. J Atmos Sci, 2005, 62(9): 3051-3064. doi:  10.1175/JAS3534.1
    [2]
    Morrison H, Milbrandt J A. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part Ⅰ: Scheme description and idealized tests. J Atmos Sci, 2015, 72(1): 287-311. doi:  10.1175/JAS-D-14-0065.1
    [3]
    Cifelli R, Chandrasekar V, Lim S, et al. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J Atmos Ocean Technol, 2011, 28(3): 352-364. doi:  10.1175/2010JTECHA1488.1
    [4]
    Gilmore M S, Straka J M, Rasmussen E N. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon Wea Rev, 2004, 132(11): 2610-2627. doi:  10.1175/MWR2810.1
    [5]
    Krishna U V M, Reddy K K, Seela B K, et al. Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau Islands in the Western Pacific Ocean. Atmos Res, 2016, 174: 41-51.
    [6]
    Zhang G, Vivekanandan J, Brandes E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans Geosci Remote Sens, 2001, 39(4): 830-841. doi:  10.1109/36.917906
    [7]
    Chang W T, Gao W H, Duan Y H, et al. The impact of cloud microphysical processes on typhoon numerical simulation. J Appl Meteor Sci, 2019, 30(4): 443-455. doi:  10.11898/1001-7313.20190405
    [8]
    Lam H Y, Din J, Jong S L. Statistical and physical descriptions of raindrop size distributions in equatorial Malaysia from disdrometer observations. Adv Meteor, 2015(2). DOI:  10.1155/2015/253730.
    [9]
    Ji L, Chen H N, Li L, et al. Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, Northern China. Remote Sens, 2019, 11(12). DOI:  10.3390/rs11121479.
    [10]
    Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteor, 1996, 35(3): 355-371. doi:  10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2
    [11]
    Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos Sci, 2003, 60(2): 354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [12]
    Ge L L, Lü G Z, Zhao G X, et al. Seasonal distribution characteristics of raindrop spectrum in Taiyuan. J Appl Meteor Sci, 2023, 34(4): 489-502. doi:  10.11898/1001-7313.20230409
    [13]
    Yuan Y, Zhu S C, Li A H. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. doi:  10.11898/1001-7313.20160610
    [14]
    Wen L, Zhao K, Zhang G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data. J Geophys Res Atmos, 2016, 121(5): 2265-2282. doi:  10.1002/2015JD024160
    [15]
    Huang Z W, Peng S Y, Zhang H R, et al. Characteristics of raindrop size distribution at Anxi of Fujian. J Appl Meteor Sci, 2022, 33(2): 205-217. doi:  10.11898/1001-7313.20220207
    [16]
    Wen L, Zhao K, Zhang G F, et al. Impacts of instrument limitations on estimated raindrop size distribution, radar parameters, and model microphysics during Mei-yu season in East China. J Atmos Ocean Technol, 2017, 34(5): 1021-1037. doi:  10.1175/JTECH-D-16-0225.1
    [17]
    Mei H X, Liang X Z, Zeng M J, et al. Raindrop size distribution characteristics of Nanjing in summer of 2015—2017. J Appl Meteor Sci, 2020, 31(1): 117-128. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX202001011.htm
    [18]
    Huo Z Y, Ruan Z, Wei M, et al. Statistical characteristics of raindrop size distribution in South China summer based on the vertical structure derived from VPR-CFMCW. Atmos Res, 2019, 222: 47-61.
    [19]
    Tang Q, Xiao H, Guo C W, et al. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos Res, 2014, 135: 59-75.
    [20]
    Wen G, Xiao H, Yang H L, et al. Characteristics of summer and winter precipitation over northern China. Atmos Res, 2017, 197: 390-406.
    [21]
    Li X, Zhang L. Formation mechanism and microphysics characteristics of heavy rainfall caused by northward-moving typhoons. J Appl Meteor Sci, 2022, 33(1): 29-42. doi:  10.11898/1001-7313.20200111
    [22]
    Chen B J, Li Z H, Liu J C, et al. Model of raindrop size distribution in three types of precipitation. Acta Meteor Sinica, 1998, 56(4): 506-512. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB804.012.htm
    [23]
    Gong F J, Liu J C, Li Z H. Study on raindrop spectrum characteristics of three types of precipitation clouds. Chinese J Atmos Sci, 1997, 21(5): 607-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK705.011.htm
    [24]
    Fang B, Guo X L, Xiao H. A study on characteristics of spectral parameters and characteristic variables of raindrop size distribution for different cloud systems in Liaoning Province. Chinese J Atmos Sci, 2016, 40(6): 1154-1164. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201606005.htm
    [25]
    Sun Q H, Ma H B, Qi Y B, et al. Distribution characteristics of raindrop spectrum at Changbai Mountain foothills in summer of 2021. J Appl Meteor Sci, 2023, 34(3): 336-347. doi:  10.11898/1001-7313.20230307
    [26]
    Guo J P, Tian Z H, Zhang J J. Forecasting models of heat index for corn in Northeast China. J Appl Meteor Sci, 2003, 14(5): 626-633. http://qikan.camscma.cn/article/id/20030577
    [27]
    Yao X P, Dong M. Research on the features of summer rainfall in Northeast China. Q J Appl Meteor, 2000, 11(3): 297-303. http://qikan.camscma.cn/article/id/20000345
    [28]
    Huang L J, Cui X P. Statistical characteristics of the Northeast China cold vortex and its impact on precipitation distribution from 2000 to 2019. Chinese J Atmos Sci, 2023, 47(6): 1925-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202306016.htm
    [29]
    Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318. doi:  10.11898/1001-7313.20220305
    [30]
    Friedrich K, Higgins S, Masters F J, et al. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Ocean Technol, 2013, 30(9): 2063-2080.
    [31]
    Chen B J, Hu Z Q, Liu L P, et al. Raindrop size distribution measurements at 4, 500m on the Tibetan Plateau during TIPEX-Ⅲ. J Geophys Res Atmos, 2017, 122(20): 11092-11106.
    [32]
    Ulbrich C W. Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor, 1983, 22(10): 1764-1775.
    [33]
    Kozu T, Nakamura K. Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J Atmos Ocean Technol, 1991, 8(2): 259-270.
    [34]
    Tokay A, Petersen W A, Gatlin P, et al. Comparison of raindrop size distribution measurements by collocated disdrometers. J Atmos Ocean Technol, 2013, 30(8): 1672-1690.
    [35]
    Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J Appl Meteor Climatol, 2007, 46(11): 1777-1791.
    [36]
    Chen B J, Yang J, Pu J P. Statistical characteristics of raindrop size distribution in the Meiyu season observed in Eastern China. J Meteor Soc Jpn, 2013, 91(2): 215-227.
    [37]
    Han Y, Guo J P, Li H J, et al. Investigation of raindrop size distribution and its potential influential factors during warm season over China. Atmos Res, 2022, 275. DOI:  10.1016/j.atmosres.2022.106248.
    [38]
    Dolan B, Fuchs B, Rutledge S A, et al. Primary modes of global drop size distributions. J Atmos Sci, 2018, 75(5): 1453-1476.
    [39]
    Zhang G F, Vivekanandan J, Brandes E A, et al. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information?. J Atmos Oceanic Technol, 2003, 20(8): 1106-1119.
    [40]
    Wen L, Zhao K, Wang M Y, et al. Seasonal variations of observed raindrop size distribution in East China. Adv Atmos Sci, 2019, 36(4): 346-362.
    [41]
    Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm. Wea Forecasting, 1998, 13(2): 377-395.
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(3)

    Article views (262) PDF downloads(69) Cited by()
    • Received : 2024-03-28
    • Accepted : 2024-04-28
    • Published : 2024-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint