Wang Yitong, Hu Xiuqing, Shang Jian, et al. Modeling and verification of microwave scattering characteristics of typical global tropical rainforests. J Appl Meteor Sci, 2024, 35(3): 350-360. DOI:  10.11898/1001-7313.20240308.
Citation: Wang Yitong, Hu Xiuqing, Shang Jian, et al. Modeling and verification of microwave scattering characteristics of typical global tropical rainforests. J Appl Meteor Sci, 2024, 35(3): 350-360. DOI:  10.11898/1001-7313.20240308.

Modeling and Verification of Microwave Scattering Characteristics of Typical Global Tropical Rainforests

DOI: 10.11898/1001-7313.20240308
  • Received Date: 2023-12-03
  • Rev Recd Date: 2024-03-11
  • Publish Date: 2024-05-31
  • To ensure the microwave scatterometer is accurately calibrated, natural targets with stability, homogeneity, and isotropy are selected as references. The broad and continuous spatial distribution of the tropical rainforest, along with its relatively consistent vegetation cover, makes it an ideal choice.A tropical rainforest optimal stable area selection algorithm, combining mean, standard deviation, and relative standard deviation, is proposed using measurements from the advanced scatterometer (ASCAT) onboard the second Meteorological Operational satellite (MetOp-B) from 2019 to 2021. It is used to identify stable areas within the Amazon, Congo, and Southeast Asian rainforests. Results show that the Amazon rainforest has a larger stable area compared to the Congo and Southeast Asian rainforests, indicating more consistent backscatter across space. However, the Southeast Asian rainforest exhibits scattered stable areas and unstable backscatter properties.To accurately model the intrinsic characteristics of targets within stable areas, influences of seasonal variations, incidence angles and azimuth angles are comprehensively considered. The scatterometer, as an independently measured remote sensing instrument, is not affected by seasonal variations on the earth and experiences minimal temperature-related fluctuations. Therefore, seasonal characteristics of backscatter coefficients in rainforests can be modeled to reduce their impact. Different incidence and azimuth angles can cause variations in the backscatter coefficient. To address this issue, responses to these aspects are also modeled. It is observed that daytime data, with lower model errors, shows greater stability in the stable areas of the Amazon and Congo rainforests. Therefore, daytime data from these areas should be selected to assess instrument stability.A stability verification of ASCAT measurements from the stable areas of the Amazon and Congo rainforest on MetOp-C, covering the period from 1 July 2019 to 31 October 2023, is carried out based on model coefficients derived from the continuous three-year data of ASCAT on MetOp-B. The calibration stability verification quantifies the magnitude of variations in ASCAT measurements over different periods. Through analysis, it's found that measurements from the ASCAT on MetOp-C shows regular fluctuations of about 0.05 dB, indicating relatively stable characteristics.
  • Fig. 1  Stable area masks for tropical rainforests

    Fig. 2  Monthly average time series of backscatter coefficient in stable areas (ascending orbits occur at night, while descending orbits occur in the daytime)

    Fig. 3  Monthly average time series of backscatter coefficient in stable areas after time correction

    Fig. 4  Backscatter coefficient varying with incident angle for stable areas (the black solid line denotes fitting curve)

    Fig. 5  Backscatter coefficient varying with azimuth angle for stable areas (the black solid line denotes fitting curve)

    Fig. 6  Validation curve of ASCAT scatterometer onboard MetOp-C satellite

    Table  1  Thresholds for each mask determination method

    时段 平均值法/dB 相对标准差法/dB 标准差法/dB
    白天 ±0.5 1.0 0.2
    夜间 ±0.5 1.0 0.2
    DownLoad: Download CSV

    Table  2  Evaluation indices in different stable areas

    地区 时段 均方根误差/dB 平均绝对误差/dB 决定系数
    亚马逊雨林 夜间 0.182 0.145 0.960
    白天 0.157 0.120 0.971
    刚果雨林 夜间 0.175 0.138 0.961
    白天 0.159 0.122 0.970
    东南亚雨林 夜间 0.317 0.254 0.893
    白天 0.280 0.222 0.913
    DownLoad: Download CSV

    Table  3  Results of each evaluation index under different incident angle and azimuth angle responses

    地区 模型参数项 时段 均方根误差/dB 平均绝对误差/dB 决定系数
    亚马逊雨林 无入射角调制 夜间 0.717 0.554 0.410
    白天 0.711 0.540 0.431
    仅含线性入射角调制 夜间 0.203 0.162 0.951
    白天 0.191 0.151 0.958
    无方位角调制 夜间 0.191 0.152 0.955
    白天 0.167 0.130 0.966
    仅含一阶方位角调制 夜间 0.183 0.146 0.959
    白天 0.160 0.123 0.969
    刚果雨林 无入射角调制 夜间 0.717 0.551 0.390
    白天 0.739 0.562 0.409
    仅含线性入射角调制 夜间 0.200 0.159 0.951
    白天 0.195 0.155 0.957
    无方位角调制 夜间 0.181 0.143 0.959
    白天 0.166 0.129 0.968
    仅含一阶方位角调制 夜间 0.176 0.139 0.961
    白天 0.161 0.124 0.970
    DownLoad: Download CSV
  • [1]
    Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi:  10.11898/1001-7313.20230301
    [2]
    Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi:  10.11898/1001-7313.20230105
    [3]
    Wang Y F, Qi Y B, Li Q, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. doi:  10.11898/1001-7313.20220405
    [4]
    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [5]
    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [6]
    Zhang C G, Cai Y Y, Zhang J C. The application of monitoring sea fog in Taiwan strait using MODIS remote sensing data. J Appl Meteor Sci, 2009, 20(1): 8-16. doi:  10.3969/j.issn.1001-7313.2009.01.002
    [7]
    Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758. doi:  10.11898/1001-7313.20200610
    [8]
    Zhang Y, Jiang X W, Lin M S, et al. The present research status and development trend of spacebonre microwave scatterometer. Remote Sens Inf, 2009, 24(6): 87-94. doi:  10.3969/j.issn.1000-3177.2009.06.019
    [9]
    Kunz L B, Long D G. Melt detection in Antarctic ice shelves using scatterometers and microwave radiometers. IEEE Trans Geosci Remote Sens, 2006, 44(9): 2461-2469. doi:  10.1109/TGRS.2006.874138
    [10]
    Jarlan L, Mazzega P, Mougin E, et al. Mapping of Sahelian vegetation parameters from ERS scatterometer data with an evolution strategies algorithm. Remote Sens Environ, 2003, 87(1): 72-84. doi:  10.1016/S0034-4257(03)00164-0
    [11]
    Stuart K M, Long D G. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res Part II Top Stud Oceanogr, 2011, 58(11/12): 1285-1300.
    [12]
    Zhang L X, Zhang T X, Wang G. Research on calibration technology of spaceborne microwave scatterometer. Space Electron Technol, 1996(4): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ199604007.htm
    [13]
    Mu B, Liu J Q, Song Q T, et al. A review of in-orbit calibration techniques for spaceborne microwave scatterometers. Remote Sens Inf, 2013, 28(3): 112-118. doi:  10.3969/j.issn.1000-3177.2013.03.020
    [14]
    He J Y, Zhang S W. In-orbit performance analysis on monitoring typhoon with FY-3B/MWHS. J Appl Meteor Sci, 2016, 27(6): 709-715. doi:  10.11898/1001-7313.20160607
    [15]
    Kumar R, Bhowmick S A, Babu K N, et al. Relative calibration using natural terrestrial targets: A preparation towards Oceansat-2 scatterometer. IEEE Trans Geosci Remote Sens, 2011, 49(6): 2268-2273. doi:  10.1109/TGRS.2010.2094196
    [16]
    Tsai W Y, Graf J E, Winn C, et al. Postlaunch sensor verification and calibration of the NASA Scatterometer. IEEE Trans Geosci Remote Sens, 1999, 37(3): 1517-1542. doi:  10.1109/36.763264
    [17]
    Zec J, Long D G, Jones W L. NSCAT normalized radar backscattering coefficient biases using homogenous land targets. J Geophys Res, 1999, 104(C5): 11557-11568. doi:  10.1029/1998JC900098
    [18]
    Kunz L B, Long D G. Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets. IEEE Geosci Remote Sens Lett, 2005, 2(2): 182-186. doi:  10.1109/LGRS.2004.842468
    [19]
    Madsen N M, Long D G. Calibration and validation of the RapidScat scatterometer using tropical rainforests. IEEE Trans Geosci Remote Sens, 2016, 54(5): 2846-2854. doi:  10.1109/TGRS.2015.2506463
    [20]
    Manise N, Neyt X, Acheroy M. Calibration Strategy for ERS Scatterometer Data Reprocessing. Conference on Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, 2005.
    [21]
    Long D G, Skouson G B. Calibration of spaceborne scatterometers using tropical rain forests. IEEE Trans Geosci Remote Sensing, 1996, 34(2): 413-424. doi:  10.1109/36.485119
    [22]
    Shimada M. Long-term stability of L-band normalized radar cross section of Amazon rainforest using the JERS-1 SAR. Can J Remote Sens, 2005, 31(1): 132-137. doi:  10.5589/m04-058
    [23]
    Figa-Saldaña J, Wilson J J W, Attema E, et al. The advanced scatterometer(ASCAT) on the meteorological operational(MetOp) platform: A follow on for European wind scatterometers. Can J Remote Sens, 2002, 28(3): 404-412. doi:  10.5589/m02-035
    [24]
    Ricciardulli L, Manaster A. Intercalibration of ASCAT scatterometer winds from MetOp-A, -B, and-C, for a stable climate data record. Remote Sens, 2021, 13(18). DOI:  10.3390/rs13183678.
    [25]
    Xie X P, Wei J S, Huang L. Evaluation of ASBAT boastal wind product using nearshore buoy data. J Appl Meteor Sci, 2014, 25(4): 445-453. doi:  10.3969/j.issn.1001-7313.2014.04.007
    [26]
    Anderson C, Figa J, Bonekamp H, et al. Validation of backscatter measurements from the advanced scatterometer on MetOp-A. J Atmos Ocean Technol, 2011, 29(1): 77-88. doi:  10.1175/JTECH-D-11-00020.1
    [27]
    Prigent C, Jimenez C, Dinh L A, et al. Diurnal and seasonal variations of passive and active microwave satellite observations over tropical forests. J Geophys Res Biogeosciences, 2022, 127(2). DOI:  10.1029/2021JG006677.
    [28]
    Satake M, Hanado H. Diurnal change of Amazon rain forest σ0 observed by Ku-band spaceborne radar. IEEE Trans Geosci Remote Sens, 2004, 42(6): 1127-1134. doi:  10.1109/TGRS.2004.825589
    [29]
    Frolking S, Milliman T, Palace M, et al. Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia. Remote Sens Environ, 2011, 115(3): 897-907. doi:  10.1016/j.rse.2010.11.017
    [30]
    Steele-Dunne S C, Friesen J, van de Giesen N. Using diurnal variation in backscatter to detect vegetation water stress. IEEE Trans Geosci Remote Sens, 2012, 50(7): 2618-2629. doi:  10.1109/TGRS.2012.2194156
    [31]
    van Emmerik T, Steele-Dunne S C, Judge J, et al. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress. IEEE Trans Geosci Remote Sens, 2015, 53(7): 3855-3869. doi:  10.1109/TGRS.2014.2386142
    [32]
    ASCAT-B Level 1 Calibration and Validation Report. EUMETSAT, Darmstadt, Germany, 2012.
    [33]
    Shang J, Wang Z X, Dou F L, et al. Preliminary performance of the WindRAD scatterometer onboard the FY-3E meteorological satellite. IEEE Trans Geosci Remote Sens, 2024, 62. DOI:  10.1109/TGRS.2023.3337098.
    [34]
    Ulaby F T, Long D G, Blackwell W J, et al. Microwave Radar and Radiometric Remote Sensing. Ann Arbor: The University of Michigan Press, 2014.
    [35]
    Early D S, Long D G. Azimuthal modulation of C-band scatterometer σ0 over Southern Ocean Sea ice. IEEE Trans Geosci Remote Sens, 1997, 35(5): 1201-1209. doi:  10.1109/36.628787
    [36]
    Long D G, Drinkwater M R. Azimuth variation in microwave scatterometer and radiometer data over Antarctica. IEEE Trans Geosci Remote Sens, 2000, 38(4): 1857-1870. doi:  10.1109/36.851769
    [37]
    Ashcraft I S, Long D G. Observation and characterization of radar backscatter over Greenland. IEEE Trans Geosci Remote Sens, 2005, 43(2): 225-237. doi:  10.1109/TGRS.2004.841484
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(3)

    Article views (175) PDF downloads(20) Cited by()
    • Received : 2023-12-03
    • Accepted : 2024-03-11
    • Published : 2024-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint