时段 | 平均值法/dB | 相对标准差法/dB | 标准差法/dB |
白天 | ±0.5 | 1.0 | 0.2 |
夜间 | ±0.5 | 1.0 | 0.2 |
Citation: | Wang Yitong, Hu Xiuqing, Shang Jian, et al. Modeling and verification of microwave scattering characteristics of typical global tropical rainforests. J Appl Meteor Sci, 2024, 35(3): 350-360. DOI: 10.11898/1001-7313.20240308. |
Table 1 Thresholds for each mask determination method
时段 | 平均值法/dB | 相对标准差法/dB | 标准差法/dB |
白天 | ±0.5 | 1.0 | 0.2 |
夜间 | ±0.5 | 1.0 | 0.2 |
Table 2 Evaluation indices in different stable areas
地区 | 时段 | 均方根误差/dB | 平均绝对误差/dB | 决定系数 |
亚马逊雨林 | 夜间 | 0.182 | 0.145 | 0.960 |
白天 | 0.157 | 0.120 | 0.971 | |
刚果雨林 | 夜间 | 0.175 | 0.138 | 0.961 |
白天 | 0.159 | 0.122 | 0.970 | |
东南亚雨林 | 夜间 | 0.317 | 0.254 | 0.893 |
白天 | 0.280 | 0.222 | 0.913 |
Table 3 Results of each evaluation index under different incident angle and azimuth angle responses
地区 | 模型参数项 | 时段 | 均方根误差/dB | 平均绝对误差/dB | 决定系数 |
亚马逊雨林 | 无入射角调制 | 夜间 | 0.717 | 0.554 | 0.410 |
白天 | 0.711 | 0.540 | 0.431 | ||
仅含线性入射角调制 | 夜间 | 0.203 | 0.162 | 0.951 | |
白天 | 0.191 | 0.151 | 0.958 | ||
无方位角调制 | 夜间 | 0.191 | 0.152 | 0.955 | |
白天 | 0.167 | 0.130 | 0.966 | ||
仅含一阶方位角调制 | 夜间 | 0.183 | 0.146 | 0.959 | |
白天 | 0.160 | 0.123 | 0.969 | ||
刚果雨林 | 无入射角调制 | 夜间 | 0.717 | 0.551 | 0.390 |
白天 | 0.739 | 0.562 | 0.409 | ||
仅含线性入射角调制 | 夜间 | 0.200 | 0.159 | 0.951 | |
白天 | 0.195 | 0.155 | 0.957 | ||
无方位角调制 | 夜间 | 0.181 | 0.143 | 0.959 | |
白天 | 0.166 | 0.129 | 0.968 | ||
仅含一阶方位角调制 | 夜间 | 0.176 | 0.139 | 0.961 | |
白天 | 0.161 | 0.124 | 0.970 |
[1] |
Cui P, Wang S J, Lu F, et al. FY-4A/AGRI sea surface temperature product and quality validation. J Appl Meteor Sci, 2023, 34(3): 257-269. doi: 10.11898/1001-7313.20230301
|
[2] |
Zhou X S, Guo Q Y, Xia Y C, et al. Inspection of FY-3D satellite temperature data based on horizontal drift round-trip sounding data. J Appl Meteor Sci, 2023, 34(1): 52-64. doi: 10.11898/1001-7313.20230105
|
[3] |
Wang Y F, Qi Y B, Li Q, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer. J Appl Meteor Sci, 2022, 33(4): 442-453. doi: 10.11898/1001-7313.20220405
|
[4] |
Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604
|
[5] |
Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101
|
[6] |
Zhang C G, Cai Y Y, Zhang J C. The application of monitoring sea fog in Taiwan strait using MODIS remote sensing data. J Appl Meteor Sci, 2009, 20(1): 8-16. doi: 10.3969/j.issn.1001-7313.2009.01.002
|
[7] |
Yang L, Han L J, Song J L, et al. Monitoring and evaluation of high temperature and heat damage of summer maize based on remote sensing data. J Appl Meteor Sci, 2020, 31(6): 749-758. doi: 10.11898/1001-7313.20200610
|
[8] |
Zhang Y, Jiang X W, Lin M S, et al. The present research status and development trend of spacebonre microwave scatterometer. Remote Sens Inf, 2009, 24(6): 87-94. doi: 10.3969/j.issn.1000-3177.2009.06.019
|
[9] |
Kunz L B, Long D G. Melt detection in Antarctic ice shelves using scatterometers and microwave radiometers. IEEE Trans Geosci Remote Sens, 2006, 44(9): 2461-2469. doi: 10.1109/TGRS.2006.874138
|
[10] |
Jarlan L, Mazzega P, Mougin E, et al. Mapping of Sahelian vegetation parameters from ERS scatterometer data with an evolution strategies algorithm. Remote Sens Environ, 2003, 87(1): 72-84. doi: 10.1016/S0034-4257(03)00164-0
|
[11] |
Stuart K M, Long D G. Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res Part II Top Stud Oceanogr, 2011, 58(11/12): 1285-1300.
|
[12] |
Zhang L X, Zhang T X, Wang G. Research on calibration technology of spaceborne microwave scatterometer. Space Electron Technol, 1996(4): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ199604007.htm
|
[13] |
Mu B, Liu J Q, Song Q T, et al. A review of in-orbit calibration techniques for spaceborne microwave scatterometers. Remote Sens Inf, 2013, 28(3): 112-118. doi: 10.3969/j.issn.1000-3177.2013.03.020
|
[14] |
He J Y, Zhang S W. In-orbit performance analysis on monitoring typhoon with FY-3B/MWHS. J Appl Meteor Sci, 2016, 27(6): 709-715. doi: 10.11898/1001-7313.20160607
|
[15] |
Kumar R, Bhowmick S A, Babu K N, et al. Relative calibration using natural terrestrial targets: A preparation towards Oceansat-2 scatterometer. IEEE Trans Geosci Remote Sens, 2011, 49(6): 2268-2273. doi: 10.1109/TGRS.2010.2094196
|
[16] |
Tsai W Y, Graf J E, Winn C, et al. Postlaunch sensor verification and calibration of the NASA Scatterometer. IEEE Trans Geosci Remote Sens, 1999, 37(3): 1517-1542. doi: 10.1109/36.763264
|
[17] |
Zec J, Long D G, Jones W L. NSCAT normalized radar backscattering coefficient biases using homogenous land targets. J Geophys Res, 1999, 104(C5): 11557-11568. doi: 10.1029/1998JC900098
|
[18] |
Kunz L B, Long D G. Calibrating SeaWinds and QuikSCAT scatterometers using natural land targets. IEEE Geosci Remote Sens Lett, 2005, 2(2): 182-186. doi: 10.1109/LGRS.2004.842468
|
[19] |
Madsen N M, Long D G. Calibration and validation of the RapidScat scatterometer using tropical rainforests. IEEE Trans Geosci Remote Sens, 2016, 54(5): 2846-2854. doi: 10.1109/TGRS.2015.2506463
|
[20] |
Manise N, Neyt X, Acheroy M. Calibration Strategy for ERS Scatterometer Data Reprocessing. Conference on Remote Sensing of the Ocean, Sea Ice, and Large Water Regions, 2005.
|
[21] |
Long D G, Skouson G B. Calibration of spaceborne scatterometers using tropical rain forests. IEEE Trans Geosci Remote Sensing, 1996, 34(2): 413-424. doi: 10.1109/36.485119
|
[22] |
Shimada M. Long-term stability of L-band normalized radar cross section of Amazon rainforest using the JERS-1 SAR. Can J Remote Sens, 2005, 31(1): 132-137. doi: 10.5589/m04-058
|
[23] |
Figa-Saldaña J, Wilson J J W, Attema E, et al. The advanced scatterometer(ASCAT) on the meteorological operational(MetOp) platform: A follow on for European wind scatterometers. Can J Remote Sens, 2002, 28(3): 404-412. doi: 10.5589/m02-035
|
[24] |
Ricciardulli L, Manaster A. Intercalibration of ASCAT scatterometer winds from MetOp-A, -B, and-C, for a stable climate data record. Remote Sens, 2021, 13(18). DOI: 10.3390/rs13183678.
|
[25] |
Xie X P, Wei J S, Huang L. Evaluation of ASBAT boastal wind product using nearshore buoy data. J Appl Meteor Sci, 2014, 25(4): 445-453. doi: 10.3969/j.issn.1001-7313.2014.04.007
|
[26] |
Anderson C, Figa J, Bonekamp H, et al. Validation of backscatter measurements from the advanced scatterometer on MetOp-A. J Atmos Ocean Technol, 2011, 29(1): 77-88. doi: 10.1175/JTECH-D-11-00020.1
|
[27] |
Prigent C, Jimenez C, Dinh L A, et al. Diurnal and seasonal variations of passive and active microwave satellite observations over tropical forests. J Geophys Res Biogeosciences, 2022, 127(2). DOI: 10.1029/2021JG006677.
|
[28] |
Satake M, Hanado H. Diurnal change of Amazon rain forest σ0 observed by Ku-band spaceborne radar. IEEE Trans Geosci Remote Sens, 2004, 42(6): 1127-1134. doi: 10.1109/TGRS.2004.825589
|
[29] |
Frolking S, Milliman T, Palace M, et al. Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia. Remote Sens Environ, 2011, 115(3): 897-907. doi: 10.1016/j.rse.2010.11.017
|
[30] |
Steele-Dunne S C, Friesen J, van de Giesen N. Using diurnal variation in backscatter to detect vegetation water stress. IEEE Trans Geosci Remote Sens, 2012, 50(7): 2618-2629. doi: 10.1109/TGRS.2012.2194156
|
[31] |
van Emmerik T, Steele-Dunne S C, Judge J, et al. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress. IEEE Trans Geosci Remote Sens, 2015, 53(7): 3855-3869. doi: 10.1109/TGRS.2014.2386142
|
[32] |
ASCAT-B Level 1 Calibration and Validation Report. EUMETSAT, Darmstadt, Germany, 2012.
|
[33] |
Shang J, Wang Z X, Dou F L, et al. Preliminary performance of the WindRAD scatterometer onboard the FY-3E meteorological satellite. IEEE Trans Geosci Remote Sens, 2024, 62. DOI: 10.1109/TGRS.2023.3337098.
|
[34] |
Ulaby F T, Long D G, Blackwell W J, et al. Microwave Radar and Radiometric Remote Sensing. Ann Arbor: The University of Michigan Press, 2014.
|
[35] |
Early D S, Long D G. Azimuthal modulation of C-band scatterometer σ0 over Southern Ocean Sea ice. IEEE Trans Geosci Remote Sens, 1997, 35(5): 1201-1209. doi: 10.1109/36.628787
|
[36] |
Long D G, Drinkwater M R. Azimuth variation in microwave scatterometer and radiometer data over Antarctica. IEEE Trans Geosci Remote Sens, 2000, 38(4): 1857-1870. doi: 10.1109/36.851769
|
[37] |
Ashcraft I S, Long D G. Observation and characterization of radar backscatter over Greenland. IEEE Trans Geosci Remote Sens, 2005, 43(2): 225-237. doi: 10.1109/TGRS.2004.841484
|