分布参数 | 模态Ⅰ | 模态Ⅱ | 模态Ⅲ | |||||
V1.0 | V1.5 | V1.0 | V1.5 | V1.0 | V1.5 | |||
d/μm | 1.50 | 5.75 | 6.70 | 13.75 | 14.2 | 27.5 | ||
σ | 1.7 | 1.7 | 1.6 | 1.6 | 1.5 | 1.5 | ||
e/(g·cm2·s-2) | 3.61 | 3.61 | 3.52 | 3.52 | 3.42 | 3.42 |
Citation: | Zhou Chunhong, Rao Xiaoqin, Sheng Li, et al. Application of scale-adaptive dust emission scheme to CMA-CUACE/Dust. J Appl Meteor Sci, 2024, 35(4): 400-413. DOI: 10.11898/1001-7313.20240402. |
Table 1 Geometric mean diameter(d), geometric standard deviation(σ) and binding energy(e) of three modes of dust released in MBA scheme in CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5
分布参数 | 模态Ⅰ | 模态Ⅱ | 模态Ⅲ | |||||
V1.0 | V1.5 | V1.0 | V1.5 | V1.0 | V1.5 | |||
d/μm | 1.50 | 5.75 | 6.70 | 13.75 | 14.2 | 27.5 | ||
σ | 1.7 | 1.7 | 1.6 | 1.6 | 1.5 | 1.5 | ||
e/(g·cm2·s-2) | 3.61 | 3.61 | 3.52 | 3.52 | 3.42 | 3.42 |
Table 1 Geometric mean diameter(d), geometric standard deviation(σ) and binding energy(e) of three modes of dust released in MBA scheme in CMA-CUACE/Dust V1.0 and CMA-CUACE/Dust V1.5
分布参数 | 模态Ⅰ | 模态Ⅱ | 模态Ⅲ | |||||
V1.0 | V1.5 | V1.0 | V1.5 | V1.0 | V1.5 | |||
d/μm | 1.50 | 5.75 | 6.70 | 13.75 | 14.2 | 27.5 | ||
σ | 1.7 | 1.7 | 1.6 | 1.6 | 1.5 | 1.5 | ||
e/(g·cm2·s-2) | 3.61 | 3.61 | 3.52 | 3.52 | 3.42 | 3.42 |
Table 2 Thresholds of PM10 concentration(unit:μg·m-3) for spring dust intensity in China
地区 | 扬沙或浮尘 | 沙尘暴 | 强沙尘暴 | 特强沙尘暴 |
新疆地区 | [245, 4890] | [4891, 12388] | [12389, 16235] | 不低于16236 |
西北地区 | [408, 6031] | [6032, 8150] | 不低于8151 | |
东北地区 | [408, 3260] | [3261, 7824] | 不低于7825 | |
其余地区 | [408, 4727] | [4728, 7172] | 不低于7173 |
Table 2 Thresholds of PM10 concentration(unit:μg·m-3) for spring dust intensity in China
地区 | 扬沙或浮尘 | 沙尘暴 | 强沙尘暴 | 特强沙尘暴 |
新疆地区 | [245, 4890] | [4891, 12388] | [12389, 16235] | 不低于16236 |
西北地区 | [408, 6031] | [6032, 8150] | 不低于8151 | |
东北地区 | [408, 3260] | [3261, 7824] | 不低于7825 | |
其余地区 | [408, 4727] | [4728, 7172] | 不低于7173 |
Table 3 Processes above sand and dust storm from Mar to May in 2023
编号 | 起止时间 | 级别 | 主要影响系统 |
202306 | 03-19—03-24 | 强沙尘暴 | 地面冷锋、蒙古气旋 |
202308 | 04-09—04-13 | 沙尘暴 | 蒙古气旋及冷锋 |
202310 | 04-18—04-21 | 强沙尘暴 | 蒙古气旋及冷锋 |
202312 | 04-27—04-29 | 沙尘暴 | 冷锋 |
202314 | 05-18—05-21 | 沙尘暴 | 蒙古气旋、冷锋 |
Table 3 Processes above sand and dust storm from Mar to May in 2023
编号 | 起止时间 | 级别 | 主要影响系统 |
202306 | 03-19—03-24 | 强沙尘暴 | 地面冷锋、蒙古气旋 |
202308 | 04-09—04-13 | 沙尘暴 | 蒙古气旋及冷锋 |
202310 | 04-18—04-21 | 强沙尘暴 | 蒙古气旋及冷锋 |
202312 | 04-27—04-29 | 沙尘暴 | 冷锋 |
202314 | 05-18—05-21 | 沙尘暴 | 蒙古气旋、冷锋 |
[1] |
Li Y, Wang G F. Design and implementation of Meteorological Disaster Risk Management System. J Appl Meteor Sci, 2022, 33(5): 628-640. doi: 10.11898/1001-7313.20220510
|
[2] |
Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509
|
[3] |
Xiao H X, Zhang F, Wang Y Q, et al. Nowcasting of cloud images based on generative adversarial network and satellite data. J Appl Meteor Sci, 2023, 34(2): 220-233. doi: 10.11898/1001-7313.20230208
|
[4] |
Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503
|
[5] |
Ginoux P, Prospero J M, Gill T E, et al. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys, 2012, 50(3). DOI: 10.1029/2012RG000388.
|
[6] |
Jugder D, Gantsetseg B, Davaanyam E, et al. Developing a soil erodibility map across Mongolia. Nat Hazards, 2018, 92(1): 71-94.
|
[7] |
Zhou C H, Gui H, Hu J, et al. Detection of new dust source in Central/East Asia and their impact on simulations of a severe sand and dust storm. J Geophys Res, 2019, 124: 10232-10247. doi: 10.1029/2019JD030753
|
[8] |
Prospero J M, Ginoux P, Torres O, et al. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer(TOMS) absorbing aerosol product. Rev Geophys, 2002, 40(1). DOI: 10.1029/2000rg000095.
|
[9] |
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|
[10] |
Zhou Z J, Wang X W, Niu R Y. Climate characteristics of sandstorm in China in recent 47 years. Q J Appl Meteor, 2002, 13(2): 193-200. http://qikan.camscma.cn/article/id/20020225
|
[11] |
Ma J Y, He Q, Yang X H, et al. Characteristics analysis of regional and local sandstorm over the hinterland of Taklimakan Desert: Taking Tazhong as example. Desert Oasis Meteor, 2016, 10(2): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201602007.htm
|
[12] |
Fang Z Y, Wang W. Characteristic analysis of China dust storm in 2002. Q J Appl Meteor, 2003, 14(5): 513-521. doi: 10.3969/j.issn.1001-7313.2003.05.001
|
[13] |
Yumimoto K, Kajino M, Tanaka T Y, et al. Dust vortex in the Taklimakan Desert by Himawari-8 high frequency and resolution observation. Sci Rep, 2019, 9(1). DOI: 10.1038/s41598-018-37861-4.
|
[14] |
Chen S Y, Huang J P, Li J X, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci China Earth Sci, 2017, 60(7): 1338-1355. doi: 10.1007/s11430-016-9051-0
|
[15] |
Tian Y H, Ji Z K, Liu H Y. Main climatic factors and land cover effects on sandstorms in the central part of Inner Mongolia Plateau. Q J Appl Meteor, 2005, 16(4): 476-483. doi: 10.3969/j.issn.1001-7313.2005.04.008
|
[16] |
Li X, Liu Y. Assessment of two aerosol modules of CAM5. J Appl Meteor Sci, 2013, 24(1): 75-86. http://qikan.camscma.cn/article/id/20130108
|
[17] |
Westphal D L, Toon O B, Carlson T N. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms. J Geophys Res, 1987, 92(D3): 3027-3049. doi: 10.1029/JD092iD03p03027
|
[18] |
Iversen J D, White B R. Saltation threshold on Earth, Mars and Venus. Sedimentology, 1982, 29(1): 111-119. doi: 10.1111/j.1365-3091.1982.tb01713.x
|
[19] |
Tegen I, Fung I. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J Geophys Res, 1994, 99(D11): 22897-22914.
|
[20] |
Alfaro S C, Gomes L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J Geophys Res, 2001, 106(D16): 18075-18084.
|
[21] |
Shao Y P. A model for mineral dust emission. J Geophys Res, 2001, 106(D17): 20239-20254.
|
[22] |
Marticorena B, Bergametti G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res, 1995, 100(D8): 16415-16430.
|
[23] |
Kok J F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. PNAS, 2011, 108(3): 1016-1021.
|
[24] |
Dubovik O, Sinyuk A, Lapyonok T, et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res Atmos, 2006, 111(D11). DOI: 10.1029/2005JD006619.
|
[25] |
Nakajima T, Tonna G, Rao R, et al. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl Opt, 1996, 35(15): 2672-2686.
|
[26] |
Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys, 2012, 12(2): 779-799.
|
[27] |
Che H Z, Zhang X Y, Chen H B, et al. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J Geophys Res, 2009, 114(D3). DOI: 10.1029/2008JD011030.
|
[28] |
Zhou C H, Gong S L, Zhang X Y, et al. Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust. Atmos Chem Phys, 2008, 8(4): 787-798.
|
[29] |
Zhou C H, Zhang X C, Zhang J, et al. Representations of dynamics size distributions of mineral dust over East Asia by a regional sand and dust storm model. Atmos Res, 2021, 250. DOI: 10.1016/j.atmosres.2020.105403.
|
[30] |
Gong S L, Barrie L A, Blanchet J P, et al. Canadian Aerosol Module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development. J Geophys Res, 2003, 108(D1). DOI: 10.1029/2001JD002002.
|
[31] |
Zhou C H, Shen X J, Liu Z R, et al. Simulating aerosol size distribution and mass concentration with simultaneous nucleation, condensation/coagulation, and deposition with the GRAPES-CUACE. J Meteor Res, 2018, 32(2): 265-278.
|
[32] |
Marticorena B, Bergametti G, Aumont B, et al. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J Geophys Res, 1997, 102(D4): 4387-4404.
|
[33] |
Alfaro S C, Gaudichet A, Gomes L, et al. Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res, 1997, 102(D10): 11239-11249.
|
[34] |
Guggenheim S, Martin R T. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner, 1995, 43(2): 255-256.
|
[35] |
Alfaro S C, Gaudichet A, Gomes L, et al. Mineral aerosol production by wind erosion: Aerosol particle sizes and binding energies. Geophys Res Lett, 1998, 25(7): 991-994.
|
[36] |
Gong S L, Zhang X Y, Zhao T L, et al. Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. J Geophys Res, 2003, 108(D9). DOI: 10.1029/2002JD002632.
|