Citation: | Zhuang Zhaorong, Li Xingliang, Wang Ruichun, et al. Application of topographic impact horizontal correlation model to CMA-MESO system. J Appl Meteor Sci, 2024, 35(4): 414-428. DOI: 10.11898/1001-7313.20240403. |
Fig. 8 850 hPa height(the black contour,unit:dagpm) and wind(the blue vector) with 500 hPa height(the red contour, unit:dagpm) at 0000 UTC 3 Oct 2021(a), 250 hPa height(the black contour, unit:dagpm) and wind(the blue vector) with precipitation forecast(the green isoline, unit:mm) from 0000 UTC 3 Oct to 0000 UTC 4 Oct in 2021(b)
Fig. 8 850 hPa height(the black contour,unit:dagpm) and wind(the blue vector) with 500 hPa height(the red contour, unit:dagpm) at 0000 UTC 3 Oct 2021(a), 250 hPa height(the black contour, unit:dagpm) and wind(the blue vector) with precipitation forecast(the green isoline, unit:mm) from 0000 UTC 3 Oct to 0000 UTC 4 Oct in 2021(b)
[1] |
Zhang L H, Du Q, Chen J, et al. Sensitive experiments of surface observation data in numerical weather precipitation over southwestern China. Meteor Mon, 2009, 35(6): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906005.htm
|
[2] |
Zeng B, Zhang L H, Xiao G J, et al. Research on assimilation of surface observation data in GRAPES model. Plateau Mt Meteor Res, 2014, 34(4): 16-23. doi: 10.3969/j.issn.1674-2184.2014.04.003
|
[3] |
Wang M, Duan X, Li H H, et al. Evaluation of conventional observations contribution on WRF model forecast error in the eastern of Tibetan Plateau. Trans Atmos Sci, 2015, 38(3): 379-387. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503010.htm
|
[4] |
Xu Z F, Gong J D, Wang J J, et al. A study of assimilation of surface observational data in complex terrain part Ⅰ: Influence of the elevation difference between model surface and observation site. Chinese J Atmos Sci, 2007, 31(2): 222-232. doi: 10.3878/j.issn.1006-9895.2007.02.04
|
[5] |
Xu Z F, Gong J D, Wang J J, et al. A study of assimilation of surface observational data in complex terrain part Ⅱ: Representative error of the elevation difference between model surface and observation site. Chinese J Atmos Sci, 2007, 31(3): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200703007.htm
|
[6] |
Xu Z F, Gong J D, Li Z C. A study of assimilation of surface observational data in complex terrain part Ⅲ: Comparison analysis of two methods on solving the problem of elevation difference between model surface and observation sites. Chinese J Atmos Sci, 2009, 33(6): 1137-1147. doi: 10.3878/j.issn.1006-9895.2009.06.02
|
[7] |
Ding Y, Zhuang S Y, Gu J F. Surface wind observation data assimilation in grapes. J Trop Meteor, 2008, 24(6): 629-640. doi: 10.3969/j.issn.1004-4965.2008.06.007
|
[8] |
Chen C P, Zhang L H, Fang G Q, et al. Quality control experiments of surface observation data in GRAPES 3Dvar over Sichuan Province. Plateau Mt Meteor Res, 2010, 30(3): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201003003.htm
|
[9] |
Hao M, Gong J D, Xu Z F. Application and analysis on the mountain observatory of surface observational data. Meteor Mon, 2016, 42(4): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201604005.htm
|
[10] |
Miller P A, Benjamin S G. A system for the hourly assimilation of surface observations in mountainous and flat terrain. Mon Wea Rev, 1992, 120(10): 2342-2359. doi: 10.1175/1520-0493(1992)120<2342:ASFTHA>2.0.CO;2
|
[11] |
Deng X X, Stull R. A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. Mon Wea Rev, 2005, 133(2): 389-408. doi: 10.1175/MWR-2859.1
|
[12] |
Pu Z X, Zhang H L, Anderson J. Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Tellus A Dyn Meteor Oceanogr, 2013, 65(1): 1-20.
|
[13] |
Zhang Y M, Liu Y B, Wang H L, et al. A study on adaptability of GSI-3DVar background error covariance horizontal scale for surface observation data assimilation. J Meteor Sci, 2023, 43(3): 370-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202303009.htm
|
[14] |
Parrish D F, Derber J C. The national meteorological center's spectral statistical-interpolation analysis system. Mon Wea Rev, 1992, 120(8): 1747-1763. doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
|
[15] |
Wang J C, Zhuang Z R, Han W, et al. Improvement of background error covariance of GRAPES global variational assimilation and its influence on analysis and prediction: Estimation of three-dimensional structure of background error covariance. Acta Meteor Sinica, 2014, 72(1): 62-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401005.htm
|
[16] |
Wang Y H, Yang X F, Zeng Y H, et al. Horizontal structural characteristics analysis of global GRAPES model background error covariance. J Arid Meteor, 2017, 35(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701008.htm
|
[17] |
Zhuang Z R, Wang R C, Wang J C, et al. Characteristics and application of background errors in GRAPES-Meso. J Appl Meteor Sci, 2019, 30(3): 316-331. doi: 10.11898/1001-7313.20190306
|
[18] |
Chen D H, Shen X S. Recent progress on GRAPES research and application. J Appl Meteor Sci, 2006, 17(6): 773-777. http://qikan.camscma.cn/article/id/200606125
|
[19] |
Xue J S, Chen D H. Scientific Design and Application of Numerical Forecast System GRAPES. Beijing: Science Press, 2008.
|
[20] |
Xue J S, Liu Y, Zhang L, et al. Scientific Documentation of GRAPES-3DVar Version for Global Model//Technical Manual of Numerical Weather Prediction Center, CMA. Beijing: China Meterological Administration, 2012: 1-11.
|
[21] |
Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES-Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi: 10.11898/1001-7313.20170103
|
[22] |
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|
[23] |
Zhuang Z R, Li X L, Chen C G. Properties of horizontal correlation models and its application in GRAPES 3DVar system. Chinese J Atmos Sci, 2021, 45(1): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101015.htm
|
[24] |
Zhuang Z R, Li X L. The application of superposition of Gaussian components in GRAPES-RAFS. Acta Meteor Sinica, 2021, 79(1): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101006.htm
|
[25] |
Zhuang Z R, Jiang Y, Tian W H, et al. Hourly rapid updating assimilation forecast system of CMA-MESO and preliminary analysis of short-term forecasting effect. Chinese J Atmos Sci, 2023, 47(4): 925-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304001.htm
|
[26] |
Ma X L, Zhuang Z R, Xue J S, et al. Development of 3-D variational data assimilation system for the nonhydrostatic numerical weather prediction model-GRAPES. Acta Meteor Sinica, 2009, 67(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901007.htm
|
[27] |
Che S J, Li X, Ding T, et al. Typical summer rainstorm occurred in mid-autumn: Analysis of a disastrous continuous rainstorm and its extreme water vapor transport in northern China in early October 2021. Trans Atmos Sci, 2021, 44(6): 825-834. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202106003.htm
|
[28] |
Li D, Gu W. Analysis of characteristics and causes of precipitation anomalies over northern China in autumn 2021. Meteor Mon, 2022, 48(4): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202204010.htm
|
[29] |
Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604
|
[30] |
Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101
|
[31] |
Zhang B, Zhang F H, Li X L, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. doi: 10.11898/1001-7313.20240102
|
[32] |
Yang M J, Gong J D, Wang R C, et al. A comparison of the blending and constraining methods to introduce large-scale information into GRAPES mesoscale analysis. J Trop Meteor, 2019, 25(2): 227-244.
|
[33] |
Zhu L J, Gong J D, Huang L P, et al. Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J Appl Meteor Sci, 2017, 28(1): 38-51. doi: 10.11898/1001-7313.20170104
|
[34] |
Li H, Wang X M, Lü L Y, et al. Refined verification of numerical forecast of subtropical high edge precipitation in Huanghuai Region. J Appl Meteor Sci, 2023, 34(4): 413-425. doi: 10.11898/1001-7313.20230403
|
[35] |
Zhuang Z R, Chen J, Huang L P, et al. Impact experiments for regional forecast using blending method of global and regional analyses. Meteor Mon, 2018, 44(12): 1509-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812001.htm
|
[36] |
Zhuang Z R, Wang R C, Li X L. Application of global large scale information to GRAEPS RAFS system. Acta Meteor Sinica, 2020, 78(1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001003.htm
|
[37] |
Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409
|