Zhuang Zhaorong, Li Xingliang, Wang Ruichun, et al. Application of topographic impact horizontal correlation model to CMA-MESO system. J Appl Meteor Sci, 2024, 35(4): 414-428. DOI:  10.11898/1001-7313.20240403.
Citation: Zhuang Zhaorong, Li Xingliang, Wang Ruichun, et al. Application of topographic impact horizontal correlation model to CMA-MESO system. J Appl Meteor Sci, 2024, 35(4): 414-428. DOI:  10.11898/1001-7313.20240403.

Application of Topographic Impact Horizontal Correlation Model to CMA-MESO System

DOI: 10.11898/1001-7313.20240403
  • Received Date: 2024-03-30
  • Rev Recd Date: 2024-06-04
  • Publish Date: 2024-07-31
  • The impact of near-surface observations on analysis and forecasting in complex terrain is studied by introducing the role of terrain in the background error horizontal correlation model. Observation information propagates isotropically on the model level in the height-based terrain-following coordinates since the background error horizontal correlation in CMA-MESO 3DVar system is characterized by an isotropic Gaussian correlation model. However, in the near-surface layer with complex topography, the propagation of observation information is blocked by mountain ranges, and thus its background error covariance is inhomogeneous and anisotropic, and furthermore, the propagation of observation information should vary with topography. The background error horizontal correlation coefficients in complex terrain are computed using NMC method by National Meteorological Center of USA. Results show that the blocking of large terrain causes the background error horizontal correlation coefficients to decrease more rapidly across mountain ranges, where the near-surface wind field is more localized than the temperature and humidity fields, with smaller horizontal correlation characteristic length scales, and the wind field information propagates over a closer distance. Based on the actual statistical structure, a Gaussian correlation model that includes effects of terrain height and terrain gradient is constructed, and the newly constructed horizontal correlation model accurately characterizes the decrease after mountain ranges are blocked. In CMA-MESO 3DVar analysis, the impact of terrain on the propagation of observational information is effectively incorporated by including a terrain height error term in the background error level correlation model. Idealized experiments show that the horizontal correlation modeling scheme that considering the terrain height error term allows the observation information to propagate anisotropically with the effect of observation information significantly diminishing across large terrain and the analysis increments more reasonable. Results of a forecast experiment for a heavy precipitation process in northern China indicate that the correlation modeling scheme that varying with the terrain height propagates the anisotropy of the ground observation information and weakens the analytical increment near the ground with large terrain, and thus makes a slightly biased and positive contribution to the precipitation forecast neutrality. Results of a 5-day hourly cycle rapid updating analysis and forecast for precipitation processes in East China show that the horizontal correlation modeling scheme with terrain elevation makes a positive contribution to 10-m wind field at the ground level and the precipitation forecast within 24 hours.
  • Fig. 1  Horizontal correlation coefficients between point P and other grids(the shaded denotes terrain height)

    Fig. 2  Zonal and meridional correlation coefficients between point P and other grids (the grey line denotes terrain height)

    Fig. 3  Schematic of correlation between two points under topography

    Fig. 4  Horizontal correlation coefficients in different terrains(the shaded denotes topography)

    Fig. 5  Analysis increments of zonal wind(unit:m·s-1) with wind observation at point P(the shaded denotes terrain height)

    Fig. 6  Analysis increments of zonal wind(unit:m·s-1) with wind observation at point Q(the shaded denotes terrain height)

    Fig. 7  Analysis increments of zonal wind and potential temperature of 110.0°E at the first level with wind and temperature observations at point P(the grey line denotes terrain height)

    Fig. 8  850 hPa height(the black contour,unit:dagpm) and wind(the blue vector) with 500 hPa height(the red contour, unit:dagpm) at 0000 UTC 3 Oct 2021(a), 250 hPa height(the black contour, unit:dagpm) and wind(the blue vector) with precipitation forecast(the green isoline, unit:mm) from 0000 UTC 3 Oct to 0000 UTC 4 Oct in 2021(b)

    Fig. 9  Analysis increments and difference for temperature at the first model level(the blue isoline, unit:℃) with absolute bias(the color dot)(the shaded denotes terrain height)

    Fig. 10  24 h precipitation(the shaded) from 0000 UTC 3 Oct to 0000 UTC 4 Oct in 2021

    Fig. 11  Difference in absolute bias of 24 h precipitation between improve and control experiments(the color dot) (the shaded denotes terrain height)

    Fig. 12  ETS of 6 h precipitation forecasts

  • [1]
    Zhang L H, Du Q, Chen J, et al. Sensitive experiments of surface observation data in numerical weather precipitation over southwestern China. Meteor Mon, 2009, 35(6): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200906005.htm
    [2]
    Zeng B, Zhang L H, Xiao G J, et al. Research on assimilation of surface observation data in GRAPES model. Plateau Mt Meteor Res, 2014, 34(4): 16-23. doi:  10.3969/j.issn.1674-2184.2014.04.003
    [3]
    Wang M, Duan X, Li H H, et al. Evaluation of conventional observations contribution on WRF model forecast error in the eastern of Tibetan Plateau. Trans Atmos Sci, 2015, 38(3): 379-387. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503010.htm
    [4]
    Xu Z F, Gong J D, Wang J J, et al. A study of assimilation of surface observational data in complex terrain part Ⅰ: Influence of the elevation difference between model surface and observation site. Chinese J Atmos Sci, 2007, 31(2): 222-232. doi:  10.3878/j.issn.1006-9895.2007.02.04
    [5]
    Xu Z F, Gong J D, Wang J J, et al. A study of assimilation of surface observational data in complex terrain part Ⅱ: Representative error of the elevation difference between model surface and observation site. Chinese J Atmos Sci, 2007, 31(3): 449-458. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200703007.htm
    [6]
    Xu Z F, Gong J D, Li Z C. A study of assimilation of surface observational data in complex terrain part Ⅲ: Comparison analysis of two methods on solving the problem of elevation difference between model surface and observation sites. Chinese J Atmos Sci, 2009, 33(6): 1137-1147. doi:  10.3878/j.issn.1006-9895.2009.06.02
    [7]
    Ding Y, Zhuang S Y, Gu J F. Surface wind observation data assimilation in grapes. J Trop Meteor, 2008, 24(6): 629-640. doi:  10.3969/j.issn.1004-4965.2008.06.007
    [8]
    Chen C P, Zhang L H, Fang G Q, et al. Quality control experiments of surface observation data in GRAPES 3Dvar over Sichuan Province. Plateau Mt Meteor Res, 2010, 30(3): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201003003.htm
    [9]
    Hao M, Gong J D, Xu Z F. Application and analysis on the mountain observatory of surface observational data. Meteor Mon, 2016, 42(4): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201604005.htm
    [10]
    Miller P A, Benjamin S G. A system for the hourly assimilation of surface observations in mountainous and flat terrain. Mon Wea Rev, 1992, 120(10): 2342-2359. doi:  10.1175/1520-0493(1992)120<2342:ASFTHA>2.0.CO;2
    [11]
    Deng X X, Stull R. A mesoscale analysis method for surface potential temperature in mountainous and coastal terrain. Mon Wea Rev, 2005, 133(2): 389-408. doi:  10.1175/MWR-2859.1
    [12]
    Pu Z X, Zhang H L, Anderson J. Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Tellus A Dyn Meteor Oceanogr, 2013, 65(1): 1-20.
    [13]
    Zhang Y M, Liu Y B, Wang H L, et al. A study on adaptability of GSI-3DVar background error covariance horizontal scale for surface observation data assimilation. J Meteor Sci, 2023, 43(3): 370-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX202303009.htm
    [14]
    Parrish D F, Derber J C. The national meteorological center's spectral statistical-interpolation analysis system. Mon Wea Rev, 1992, 120(8): 1747-1763. doi:  10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
    [15]
    Wang J C, Zhuang Z R, Han W, et al. Improvement of background error covariance of GRAPES global variational assimilation and its influence on analysis and prediction: Estimation of three-dimensional structure of background error covariance. Acta Meteor Sinica, 2014, 72(1): 62-78. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401005.htm
    [16]
    Wang Y H, Yang X F, Zeng Y H, et al. Horizontal structural characteristics analysis of global GRAPES model background error covariance. J Arid Meteor, 2017, 35(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201701008.htm
    [17]
    Zhuang Z R, Wang R C, Wang J C, et al. Characteristics and application of background errors in GRAPES-Meso. J Appl Meteor Sci, 2019, 30(3): 316-331. doi:  10.11898/1001-7313.20190306
    [18]
    Chen D H, Shen X S. Recent progress on GRAPES research and application. J Appl Meteor Sci, 2006, 17(6): 773-777. http://qikan.camscma.cn/article/id/200606125
    [19]
    Xue J S, Chen D H. Scientific Design and Application of Numerical Forecast System GRAPES. Beijing: Science Press, 2008.
    [20]
    Xue J S, Liu Y, Zhang L, et al. Scientific Documentation of GRAPES-3DVar Version for Global Model//Technical Manual of Numerical Weather Prediction Center, CMA. Beijing: China Meterological Administration, 2012: 1-11.
    [21]
    Huang L P, Chen D H, Deng L T, et al. Main technical improvements of GRAPES-Meso V4.0 and verification. J Appl Meteor Sci, 2017, 28(1): 25-37. doi:  10.11898/1001-7313.20170103
    [22]
    Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi:  10.11898/1001-7313.20220601
    [23]
    Zhuang Z R, Li X L, Chen C G. Properties of horizontal correlation models and its application in GRAPES 3DVar system. Chinese J Atmos Sci, 2021, 45(1): 229-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202101015.htm
    [24]
    Zhuang Z R, Li X L. The application of superposition of Gaussian components in GRAPES-RAFS. Acta Meteor Sinica, 2021, 79(1): 79-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202101006.htm
    [25]
    Zhuang Z R, Jiang Y, Tian W H, et al. Hourly rapid updating assimilation forecast system of CMA-MESO and preliminary analysis of short-term forecasting effect. Chinese J Atmos Sci, 2023, 47(4): 925-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202304001.htm
    [26]
    Ma X L, Zhuang Z R, Xue J S, et al. Development of 3-D variational data assimilation system for the nonhydrostatic numerical weather prediction model-GRAPES. Acta Meteor Sinica, 2009, 67(1): 50-60. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200901007.htm
    [27]
    Che S J, Li X, Ding T, et al. Typical summer rainstorm occurred in mid-autumn: Analysis of a disastrous continuous rainstorm and its extreme water vapor transport in northern China in early October 2021. Trans Atmos Sci, 2021, 44(6): 825-834. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202106003.htm
    [28]
    Li D, Gu W. Analysis of characteristics and causes of precipitation anomalies over northern China in autumn 2021. Meteor Mon, 2022, 48(4): 494-503. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202204010.htm
    [29]
    Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi:  10.11898/1001-7313.20220604
    [30]
    Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi:  10.11898/1001-7313.20220101
    [31]
    Zhang B, Zhang F H, Li X L, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. doi:  10.11898/1001-7313.20240102
    [32]
    Yang M J, Gong J D, Wang R C, et al. A comparison of the blending and constraining methods to introduce large-scale information into GRAPES mesoscale analysis. J Trop Meteor, 2019, 25(2): 227-244.
    [33]
    Zhu L J, Gong J D, Huang L P, et al. Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J Appl Meteor Sci, 2017, 28(1): 38-51. doi:  10.11898/1001-7313.20170104
    [34]
    Li H, Wang X M, Lü L Y, et al. Refined verification of numerical forecast of subtropical high edge precipitation in Huanghuai Region. J Appl Meteor Sci, 2023, 34(4): 413-425. doi:  10.11898/1001-7313.20230403
    [35]
    Zhuang Z R, Chen J, Huang L P, et al. Impact experiments for regional forecast using blending method of global and regional analyses. Meteor Mon, 2018, 44(12): 1509-1517. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201812001.htm
    [36]
    Zhuang Z R, Wang R C, Li X L. Application of global large scale information to GRAEPS RAFS system. Acta Meteor Sinica, 2020, 78(1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202001003.htm
    [37]
    Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi:  10.11898/1001-7313.20220409
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (176) PDF downloads(49) Cited by()
    • Received : 2024-03-30
    • Accepted : 2024-06-04
    • Published : 2024-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint