过程 | 时间 | 路径 | 强对流天气 | 形成阶段 | 成熟阶段 |
“6·12” | 2022-06-12 | 西—东 | 短时强降水、大风、冰雹 | 16:38—19:23 | 19:23—22:23 |
“7·1” | 2021-07-01 | 西北—东南 | 短时强降水、大风、冰雹 | 11:38—14:34 | 14:34—18:19 |
“8·4” | 2022-08-04 | 西北—东南 | 短时强降水、大风 | 15:34—18:15 | 18:15—22:38 |
Citation: | Yang Yiya, Lei Lei, Zhong Jiqin, et al. Cloud parameter characteristics of three strengthening convective systems during downhill processes in Beijing. J Appl Meteor Sci, 2024, 35(4): 429-443. DOI: 10.11898/1001-7313.20240404. |
Fig. 10 Infrared brightness temperature (the shaded, the purple isoline and the red isoline denote brightness temperature of -32 ℃ and -52 ℃, respectively) and the wind field of 850 hPa (the black barb) and 200 hPa (the blue barb) in formation stage and mature stage of MCS in case "6·12" (the grey line denotes longitude of 116.6°E and 117.12°E, respectively)
Fig. 11 Vertical section along 116.6°E in formation stage and 117.12°E in mature stage of MCS in case "6·12" (the shaded denotes vertical velocity;the black vector denotes meridional wind field composed of v and w;the grey isoline denotes reflectivity factor(unit:dBZ);the purple line, the orange line and the green line denote cloud top height(unit:km), infrared brightness temperature(unit:℃), and water vapor brightness temperature(unit:℃), respectively)
Table 1 Mesoscale convective systems(MCSs) during 3 downhill processes in Beijing
过程 | 时间 | 路径 | 强对流天气 | 形成阶段 | 成熟阶段 |
“6·12” | 2022-06-12 | 西—东 | 短时强降水、大风、冰雹 | 16:38—19:23 | 19:23—22:23 |
“7·1” | 2021-07-01 | 西北—东南 | 短时强降水、大风、冰雹 | 11:38—14:34 | 14:34—18:19 |
“8·4” | 2022-08-04 | 西北—东南 | 短时强降水、大风 | 15:34—18:15 | 18:15—22:38 |
[1] |
Maddox R A.Meoscale convective complexes.Bull Amer Meteor Soc, 1980, 61(11):1374-1387. doi: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
|
[2] |
Houze R A Jr. Mesoscale convective systems. Rev Geophys, 2004, 42(4). DOI: 10.1029/2004RG000150.
|
[3] |
Zhang X D, Shen W Q, Yang S N, et al. Analysis of MCS activity characteristics during extreme heavy rainfall in the Yangtze River Basin from July 4 to 10, 2020. Torrential Rain Disasters, 2020, 39(6): 593-602. doi: 10.3969/j.issn.1004-9045.2020.06.007
|
[4] |
Wang X F, Cui C G. A number of advances of the research on heavy rain mesoscale convective systems. Torrential Rain Disasters, 2011, 30(2): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201102002.htm
|
[5] |
Zheng L L, Sun J H, Zhang X L, et al. Organizational modes of mesoscale convective systems over central East China. Wea Forecasting, 2013, 28(5): 1081-1098. doi: 10.1175/WAF-D-12-00088.1
|
[6] |
Duan L, Guo P Y. Overview of MCS identification and tracking using geostationary meteorological satellite. J Civ Aviat, 2021, 5(6): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE202106016.htm
|
[7] |
Qin D Y, Fang Z Y. Research progress of geostationary satellite-based convective initiation. Meteor Mon, 2014, 40(1): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201401002.htm
|
[8] |
Zhang Q, Ren J X, Xiao D X, et al. Satellite image characteristics and formation mechanisms of newborn thunderstorms in eastern Qinghai-Xizang Plateau. Meteor Sci Technol, 2018, 46(5): 943-950. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201805013.htm
|
[9] |
Mecikalski J R, Bedka K M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon Wea Rev, 2006, 134(1): 49. doi: 10.1175/MWR3062.1
|
[10] |
Vila D A, Machado L A T, Laurent H, et al. Forecast and tracking the evolution of cloud clusters(ForTraCC) using satellite infrared imagery: Methodology and validation. Wea Forecasting, 2008, 23(2): 233-245. doi: 10.1175/2007WAF2006121.1
|
[11] |
Walker J R, MacKenzie W M, Mecikalski J R, et al. An enhanced geostationary satellite-based convective initiation algorithm for 0-2 h nowcasting with object tracking. J Appl Meteor Climatol, 2012, 51(11): 1931-1949. doi: 10.1175/JAMC-D-11-0246.1
|
[12] |
He X W, Feng X H, Han Q, et al. Advances of the geostationary meteorological satellite in the world: A review. Adv Meteor Sci Tech, 2020, 10(1): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ202001007.htm
|
[13] |
Yu X D, Zheng Y G. Advances in severe convective weather research and operational service in China. Acta Meteor Sinica, 2020, 78(3): 391-418. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003006.htm
|
[14] |
Wang J Y, Cui C G, Chen Y R X, et al. Temporal and spatial characteristics of mesoscale convective systems associated with abrupt heavy rainfall events over Southwest China during May—August. Acta Meteor Sinica, 2022, 80(1): 21-38. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202201002.htm
|
[15] |
Wan F J, Diao X G. Comparative analysis on cloud evolution features and weather of two MCCs. Meteor Mon, 2018, 44(6): 759-770. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201806004.htm
|
[16] |
Feng J Q, Liu M, Cai J. Meso-scale convective characteristics of "7·22" extreme rain in the west mountainous area of Fujian. J Appl Meteor Sci, 2018, 29(6): 748-758. doi: 10.11898/1001-7313.20180610
|
[17] |
Huang X Y, Sun J S, Liu W T. The interaction between low-level jet evolution and severe convective rainstorms under topographic effect. Acta Meteor Sinica, 2020, 78(4): 551-567. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202004001.htm
|
[18] |
Ma R Y, Zheng D, Yao W, et al. Thunderstorm feature dataset and characteristics of thunderstorm activities in China. J Appl Meteor Sci, 2021, 32(3): 358-369. doi: 10.11898/1001-7313.20210308
|
[19] |
Lan Y, Zheng Y G, Mao D Y, et al. Classification and satellite nephogram features of hail weather in North China. J Appl Meteor Sci, 2014, 25(5): 538-549. http://qikan.camscma.cn/article/id/20140503
|
[20] |
Sun J S, Lei L, Yu B, et al. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing Area. Acta Meteor Sinica, 2015, 73(4): 609-623. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201504001.htm
|
[21] |
Zhou X, Zhou S W, Qin D Y, et al. Analysis of cloud top features during convective initiation using FY-2F satellite scan data. Meteor Mon, 2019, 45(2): 216-227. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201902007.htm
|
[22] |
Lu F, Zhang X H, Chen B Y, et al. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects. J Mar Meteor, 2017, 37(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201702001.htm
|
[23] |
Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15. doi: 10.11898/1001-7313.20220101
|
[24] |
Gao A C, Shen G H. Causes and precipitation microphysical characteristics of localized heavy rainstorm in western Shandong based on multi-source data. Meteor Mon, 2022, 48(11): 1475-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202211010.htm
|
[25] |
Wang Y, Dong C, Yi X Y, et al. The thermal and dynamic environmental field analysis of a meso-γ scale short-time rainstorm in Tianjin. Meteor Mon, 2021, 47(4): 398-411. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202104002.htm
|
[26] |
Zhang G L, Li Y P, Jiang J, et al. Characteristic analysis of EF3 strong tornado induced by multiple supercell storms. Meteor Mon, 2023, 49(11): 1315-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202311009.htm
|
[27] |
Xiao H X, Zhang F, Wang Y Q, et al. Nowcasting of cloud images based on generative adversarial network and satellite data. J Appl Meteor Sci, 2023, 34(2): 220-233. doi: 10.11898/1001-7313.20230208
|
[28] |
Zhang Q, Ren J X, Xiao H R, et al. Characteristics of MCC from convective initiation to mature stage over the Sichuan Basin based on FY-4A satellite data. Chinese J Atmos Sci, 2021, 45(4): 863-873. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK202104011.htm
|
[29] |
Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604
|
[30] |
Wang H P. Impacts of upper tropospheric cold low on the track of Typhoon In-fa in 2021. J Appl Meteor Sci, 2023, 34(5): 586-597. doi: 10.11898/1001-7313.20230507
|
[31] |
Yan L C, Zhang W J, Zhang Y J, et al. Temporal and spatial distribution of thunderstorms and strong winds with characteristics of lightning and convective activities in the South China Sea. J Appl Meteor Sci, 2023, 34(4): 503-512. doi: 10.11898/1001-7313.20230410
|
[32] |
Zhang P P, Liu W T, Zhang C H, et al. Observation characteristics of FY-4A lightning mapping imager during a severe rainfall. Meteor Mon, 2021, 47(11): 1391-1401. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202111008.htm
|
[33] |
Zou Y R, Wang Y, Wang S Y, et al. Characteristics of lightning activity during severe convective weather in Dalian Area based on satellite data. J Meteor Environ, 2021, 37(4): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX202104018.htm
|
[34] |
Zhi S L, Bao H M, Li J. Application ability analyses of FY-4A satellite flashes data in typhoon squall line weather surveillance. J Yunnan Univ Nat Sci Ed, 2019, 41(6): 1178-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ201906015.htm
|
[35] |
Zhang X Y, Wei M, Pan J W. Application of FY-4 lightning data in monitoring and warning a heavy precipitation in Xiamen on May 7, 2018. Remote Sens Technol Appl, 2019, 34(5): 1082-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201905019.htm
|
[36] |
Ren S L, Zhao W, Cao D J, et al. Application of FY-4A daytime convective storm and lightning products in analyzing severe thunderstorm weather in North China. J Mar Meteor, 2020, 40(1): 33-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX202001004.htm
|
[37] |
Yu X D, Yao X P, Xiong T N, et al. Principle and Application of Doppler Weather Radar. Beijing: China Meteorological Press, 2006.
|
[38] |
Fei Z P, Zheng Y G, Zhang Y, et al. MCS census and modification of MCS definition based on geostationary satellite infrared imagery. J Appl Meteor Sci, 2008, 19(1): 82-90. http://qikan.camscma.cn/article/id/20080113
|
[39] |
Fei Z P, Wang H Q, Zhang Y, et al. MCS identification and tracking based on geo-satellite IR images. J Appl Meteor Sci, 2011, 22(1): 115-122. http://qikan.camscma.cn/article/id/20110112
|
[40] |
Duan L, Guo G C. Research on method for MCS automatic identification and tracking based on FY satellite cloud image. Electron Sci Technol, 2016, 29(4): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKK201604030.htm
|
[41] |
Duan L, Liu F, Wu J J. Antomatical identification and tracking of MCS based on satellite cloud image. J Civ Aviat Univ China, 2014, 32(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201402011.htm
|
[42] |
Kang L, Long K J, Huang C H, et al. The characteristic analysis of mesoscale convective complex over Sichuan Region. J Southwest Univ Nat Sci Ed, 2016, 38(11): 149-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201611023.htm
|
[43] |
Schmetz J, Tjemkes S A, Gube M, et al. Monitoring deep convection and convective overshooting with METEOSAT. Adv Space Res, 1997, 19(3): 433-441.
|