Zhao Huarong, Ren Sanxue, Qi Yue, et al. Vertical activity characteristics of Pleonomus canaliculatus in winter wheat and summer maize rotation fields. J Appl Meteor Sci, 2024, 35(4): 467-479. DOI:  10.11898/1001-7313.20240407.
Citation: Zhao Huarong, Ren Sanxue, Qi Yue, et al. Vertical activity characteristics of Pleonomus canaliculatus in winter wheat and summer maize rotation fields. J Appl Meteor Sci, 2024, 35(4): 467-479. DOI:  10.11898/1001-7313.20240407.

Vertical Activity Characteristics of Pleonomus Canaliculatus in Winter Wheat and Summer Maize Rotation Fields

DOI: 10.11898/1001-7313.20240407
  • Received Date: 2024-04-11
  • Rev Recd Date: 2024-06-11
  • Publish Date: 2024-07-31
  • Based on the stratified survey data of Pleonomus canaliculatus in the soil of winter wheat and summer maize rotation field in North China Plain, the vertical activity of Pleonomus canaliculatus in the soil of winter wheat and summer maize rotation fields, the correlation between meteorological conditions and farmland planting management are observed and analyzed, and effects of Pleonomus canaliculatus damage on the yield of winter wheat are analyzed. By combining the insect population weight index with population density index, characteristics of the harm-dormancy activity of Pleonomus canaliculatus are investigated comprehensively in different soil layers. Results show that in the winter wheat and summer maize rotation growing season, there are 3 harm and 3 dormant periods, 3 harm periods appear in the winter wheat regreening-jointing period, the summer maize seedling period and the autumn seedling period of winter wheat, and 3 dormant periods appear in winter wheat overwintering period, winter wheat ripening-harvesting period and summer maize filling-ripening period. Among 3 harm periods, winter wheat regreening-jointing period is the most serious, which could lead to serious yield reduction of winter wheat. Winter is warmer, and spring temperature is warmer early, so Pleonomus canaliculatus exhibits characteristics of going down late and coming up early, which shortens the dormant period in winter and prolong the harmful activity period. Soil temperature, moisture, and the relationship between food and source affect the damage, dormancy, and feeding activities of Pleonomus canaliculatus. The suitable soil moisture content for it is about 15% to 18%, and the suitable soil temperature is 14 to 18 ℃. In summer, Pleonomus canaliculatus may enter dormancy or reduce activity due to lack of food sources or high temperatures and humidity of soil, Pleonomus canaliculatus can enter the dormancy or reduced activity. The analysis of winter wheat yield reduction caused by Pleonomus canaliculatus damage shows that the yield reduction rate is increased by 5.1% with an increase of 10 m-2 in insect population density or with an increase of 1.0 g·m-2 in insect weight. Results provide reference for agricultural production in North China to address climate change and scientifically manage farm to avoid diseases and pests.
  • Fig. 1  Vertical distribution characteristics of Pleonomus canaliculatus (population density ratio, population weight ratio) in winter wheat and summer maize rotation fields during 2019—2020 and 2021—2022

    Fig. 2  Relationship between population density and population weight of Pleonomus canaliculatus in winter wheat and summer maize rotation fields during 2019-2020 and 2021-2022

    Fig. 3  Changes of population density and weight of Pleonomus canaliculatus in winter wheat and summer maize rotation fields during 2019-2020 and 2021-2022

    Fig. 4  Changes of population density of Pleonomus canaliculatus in winter wheat and summer maize rotation fields during 2019-2020 and 2021-2022

    Fig. 5  Averaged dekad air temperature, dekad soil temperature and activity of Pleonomus canaliculatus in 2020 and 2022

    Fig. 6  Averaged 0-30 cm soil moisture content in winter wheat and summer maize rotation fields from 2019 to 2023

    Table  1  Population density ratio, population weight ratio of Pleonomus canaliculatus and average characteristics of maximum Pleonomus canaliculatus at crops development stage in 0-10 cm soil layer

    名称 时段 冬小麦越冬期 冬小麦返青-拔节期 冬小麦成熟-收获期 夏玉米幼苗期 夏玉米灌浆-成熟期 冬小麦秋苗期
    虫口密度占比/% 2019—2020年 1.80 60.13 32.17 43.23 9.34 52.90
    2021—2022年 10.29 83.91 57.14 61.90 23.00 62.27
    平均 6.05 72.02 44.66 52.57 16.17 57.59
    虫口重量占比/% 2019—2020年 0.97 53.17 14.83 44.41 6.09 41.23
    2021—2022年 6.17 77.70 46.71 54.85 16.86 47.90
    平均 3.57 65.44 30.77 49.63 11.48 44.57
    最大沟金针虫平均长度/mm 2019—2020年 26.65 30.55 29.21 30.00 26.70 28.01
    2021—2022年 28.98 31.14 26.29 29.02 28.11 28.67
    平均 27.82 30.85 27.75 29.51 27.41 28.34
    最大沟金针虫平均宽度/mm 2019—2020年 3.43 3.82 3.85 4.02 3.60 3.78
    2021—2022年 3.91 3.98 3.52 3.84 3.72 3.80
    平均 3.69 3.90 3.69 3.93 3.66 3.79
    DownLoad: Download CSV

    Table  2  Relationship between population density, population weight of Pleonomus canaliculatus and pest infestation rate, grain yield reduction rate in 2020 and 2022

    项目 2020年 2022年 平均变率
    关系式 R2 关系式 R2
    虫口密度与虫害株率 y=0.6667x+13.684 0.9311 y=0.4628x-4.1997 0.9188 5.65%·(10 m-2)-1
    虫口重量与虫害株率 y=5.8605x+12.852 0.9215 y=5.0494x-3.402 0.9122 5.46%·(1.0 g·m-2)-1
    虫口密度与减产率 y=-0.5275x-17.96 0.8694 y=-0.4974x+8.2421 0.9704 -5.13%·(10 m-2)-1
    虫口重量与减产率 y=-4.6974x-16.884 0.8833 y=-5.4246x+7.3687 0.9626 -5.06%·(1.0 g·m-2)-1
    虫害株率与减产率 y=-0.797x-6.8235 0.9477 y=-1.0069x+1.503 0.9271 -9.02%·(10.0 %)-1
    DownLoad: Download CSV
  • [1]
    Wu P. What Signals of IPCC Special Report on Climate Change and Land Are Released. China Meteorological News, 2019-08-15(3).
    [2]
    Zhou G S. China Agriculture Responds to Climate Change. Beijing: China Meteorological Press, 2014.
    [3]
    Deutsch C A, Tewksbury J J, Tigchelaar M, et al. Increase in crop losses to insect pests in a warming climate. Science, 2018, 361(6405): 916-919. doi:  10.1126/science.aat3466
    [4]
    Xiong W, Guo L N. Climate change "threatens" agriculture in China. Agric Econ, 2009(7): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXH200907022.htm
    [5]
    Huo Z G, Li M S, Li N, et al. Impacts of seasonal climate warming on crop diseases and pests in China. Sci Agric Sinica, 2012, 45(11): 2168-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201211006.htm
    [6]
    Huo Z G, Li M S, Wang L, et al. Impacts of precipitation variations on crop diseases and pests in China. Sci Agric Sinica, 2012, 45(10): 1935-1945. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201210007.htm
    [7]
    Li Y J, Wang C Y, Zhao B, et al. Effects of climate change on agricultural meteorological disaster and crop insects diseases. Trans Chinese Soc Agric Eng, 2010, 26(Suppl Ⅰ): 263-271. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2010S1049.htm
    [8]
    Fu X W, Wu K M. Responses of migratory insects to global climate change. Sci Agric Sinica, 2015, 48(Suppl Ⅰ): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK2015S1001.htm
    [9]
    Ge F. Challenges facing entomologists in a changing global climate. Chinese J Appl Entomol, 2011, 48(5): 1117-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201105002.htm
    [10]
    Wang C Z, Zhang L, Guo A H, et al. Long-term meteorological prediction model on the occurrence and development of rice leaf roller based on atmospheric circulation. J Appl Meteor Sci, 2019, 30(5): 565-576. doi:  10.11898/1001-7313.20190505
    [11]
    Guo A H, Wang C Z, Deng H H, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. doi:  10.11898/1001-7313.20220503
    [12]
    Wang C Z, Huo Z G, Zhang L, et al. Construction of forecasting model of meteorological suitability for wheat aphids in the northern China. J Appl Meteor Sci, 2020, 31(3): 280-289. doi:  10.11898/1001-7313.20200303
    [13]
    Wang C Z, Huo Z G, Guo A H, et al. Climatic risk assessment of winter wheat aphids in northern China. J Appl Meteor Sci, 2021, 32(2): 160-174. doi:  10.11898/1001-7313.20210203
    [14]
    The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China Society of Plant Protection. Crop Diseases and Insect Pests in China(3rd Ed). Beijing: China Agriculture Press, 2015.
    [15]
    Wu J X. Agricultural Entomology: Northern Edition(3rd Ed). Beijing: China Agriculture Press, 2016.
    [16]
    Zou Z L. Insect Ecology. Shanghai: Shanghai Scientific & Technical Publishers, 1980.
    [17]
    Wei H J. Underground Pests in China. Shanghai: Shanghai Scientific & Technical Publishers, 1989.
    [18]
    Luo Y Z, Cui J Y. Soil Entomology. Beijing: China Agriculture Press, 1995.
    [19]
    Chen Y, Ma C S. Effect of global warming on insect: A literature review. Acta Ecol Sinica, 2010, 30(8): 2159-2172. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201008026.htm
    [20]
    Chen A D. The Adaptability of Wireworm for Several Environmental Factors. Beijing: Chinese Academy of Agricultural Sciences, 2011.
    [21]
    Ren S X, Zhao H R, Qi Y, et al. The outbreak and damage of the Pleonomus canaliculatus in wheat field under the background of climate change. J Appl Meteor Sci, 2020, 31(5): 620-630. doi:  10.11898/1001-7313.20200509
    [22]
    Lu J J, Dong J M, Ren M F, et al. Migration patterns of subterranean pest insects in the soil of winter wheat-summer corn rotation fields in Linfen, Shanxi. Acta Entomol Sinica, 2017, 60(9): 1046-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-KCXB201709009.htm
    [23]
    He Z X, Guo G B, Liu Z Z. Analysis of disaster factors of Flammulina velutipes and its comprehensive control countermeasures. J Henan Agric Sci, 2006(11): 63-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY200611023.htm
    [24]
    Song Y L, Zhou G S, Guo J P, et al. Freezing injury of winter wheat in northern China and delaying sowing date to adapt. J Appl Meteor Sci, 2022, 33(4): 454-465. doi:  10.11898/1001-7313.20220406
    [25]
    Ren S X, Zhao H R, Zhou G S, et al. Response of winter wheat tanmai 98 to sowing date adjustments. J Appl Meteor Sci, 2023, 34(3): 362-372. doi:  10.11898/1001-7313.20230309
    [26]
    Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399.  10.11898/1001-7313.20230401
    [27]
    Huo Z G, Zhang H Y, Li C H, et al. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34(1): 1-14. doi:  10.11898/1001-7313.20230101
    [28]
    Dang Z H, Chen F J. Responses of insects to rainfall and drought. Chinese J Appl Entomol, 2011, 48(5): 1161-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201105007.htm
    [29]
    Luo Y Z, Niu S G, Long Y. Ecological characteristics of vertical distribution and summer dormancy of Flammulina velutipes population in wheat field ditch and its relationship with control. Chinese J Ecol, 1994, 13(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ403.001.htm
    [30]
    Luo Y Z, Niu S G, Long Y, et al. Study on yield loss and economic threshold of wheat damaged by Noctuidae. Shandong Agric Sci, 1991, 23(5): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI199105015.htm
    [31]
    Zhang R J, He X F. Potential impact of climate change on agricultural pests. Chinese J Ecol, 1997, 16(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ706.007.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (164) PDF downloads(65) Cited by()
    • Received : 2024-04-11
    • Accepted : 2024-06-11
    • Published : 2024-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint