Huo Qing, He Wenchun, Gao Feng, et al. Design and application of meteorological algorithm scheduling framework based on data perception technology. J Appl Meteor Sci, 2024, 35(4): 502-512. DOI:  10.11898/1001-7313.20240410.
Citation: Huo Qing, He Wenchun, Gao Feng, et al. Design and application of meteorological algorithm scheduling framework based on data perception technology. J Appl Meteor Sci, 2024, 35(4): 502-512. DOI:  10.11898/1001-7313.20240410.

Design and Application of Meteorological Algorithm Scheduling Framework Based on Data Perception Technology

DOI: 10.11898/1001-7313.20240410
  • Received Date: 2024-02-26
  • Rev Recd Date: 2024-05-30
  • Publish Date: 2024-07-31
  • The generation efficiency of data products depends on both the computational efficiency and the startup efficiency of algorithms. In meteorological operations, algorithms are typically data-driven, meaning they are initiated immediately upon data arrival to accelerate the generation time of data products. Therefore, data-driven meteorological services urgently require an efficient task scheduling framework to achieve the goal of starting and running algorithms as soon as data arrive, and to improve the generation efficiency of meteorological data products. CMA Big Data and Cloud Platform, referred to as Tianqing and led by National Meteorological Information Center, began nationwide business operations in December 2021. The data processing line (DPL), as the core function of Tianqing, enables the unified management and centralized scheduling of meteorological algorithms. DPL has established various task scheduling capabilities, including timer-triggered scheduling, sequential scheduling, data-arrival scheduling, and manual scheduling. Among these methods, data-arrival scheduling based on data reporting status enables the algorithm to start immediately after data reporting, greatly improving the startup time of meteorological algorithms and the generation time of meteorological data products.Core functions of data-arrival scheduling include data state awareness components, task scheduling execution components, task scheduling post-processing components, and configuration management. Among these components, the data state perception component realizes real-time analysis of the reporting status of various meteorological data in the sky engine, and sends scheduling messages to the task scheduling execution component when the data reporting rate meets scheduling requirements. The task scheduling execution component combines the necessary resource information for the algorithm and computing nodes optimization, generates task scheduling instructions, and implements algorithm startup execution. The post-processing phase of task scheduling includes gathering and updating algorithm execution status, calculation node status, and sending of alarm information for algorithm execution abnormalities. Configuration management supports configuring data-aware scheduling parameters on the front-end page.Real-time analysis of data status and scheduling enables efficient task scheduling that starts and runs the algorithm as soon as data are reported. The scheduling delay is significantly reduced, compared to the original schedule, from 3784 ms to 11 ms. Data-arrival scheduling, as the core capability of CMA Big Data and Cloud Platform, is deployed and operated in real-time in provinces and regions. Currently, the system supports the efficient scheduling of 19 core business algorithms at the national level, with a total of approximately 6.67×105 daily scheduling tasks and an average scheduling delay of 31 ms. Efficient scheduling is achieved with 14 algorithms supported at the provincial level, encompassing a total of approximately 8×104 daily scheduling times and an average scheduling delay of 156 ms. In addition, data aware scheduling achieves seamless integration of upstream and downstream algorithms in meteorological services, providing a solution to eliminate the problem of disconnection between meteorological services and improve collaboration between meteorological services.
  • Fig. 1  Framework of data-arrival scheduling

    Fig. 1  Framework of data-arrival scheduling

    Fig. 2  Flowchart of data-arrival scheduling

    Fig. 2  Flowchart of data-arrival scheduling

    Fig. 3  Container management based on K8s

    Fig. 3  Container management based on K8s

    Fig. 4  Comparison of performance between data-arrival scheduling and timer-triggered scheduling for algorithm of single radar product from 1300 BT to 1400 BT on 5 Feb 2024

    Fig. 4  Comparison of performance between data-arrival scheduling and timer-triggered scheduling for algorithm of single radar product from 1300 BT to 1400 BT on 5 Feb 2024

    Fig. 5  Comparison of computing resource usage during between data-arrival scheduling and timer-triggered scheduling for algorithm of single radar product from 1300 BT to 1400 BT on 5 Feb 2024

    Fig. 5  Comparison of computing resource usage during between data-arrival scheduling and timer-triggered scheduling for algorithm of single radar product from 1300 BT to 1400 BT on 5 Feb 2024

    Table  1  Comparison of average performance between data-arrival scheduling and timer-triggered scheduling for algorithm of single radar product from 1300 BT to 1400 BT on 5 Feb 2024

    任务调度方式 平均调度延迟/ms 平均计算资源使用率/%
    CPU 内存
    数据感知调度 11 36.7 12.1
    逐1 s定时扫描目录 502 51.1 11.2
    逐10 s定时扫描目录 3784 49.1 10.5
    DownLoad: Download CSV

    Table  1  Comparison of average performance between data-arrival scheduling and timer-triggered scheduling for algorithm of single radar product from 1300 BT to 1400 BT on 5 Feb 2024

    任务调度方式 平均调度延迟/ms 平均计算资源使用率/%
    CPU 内存
    数据感知调度 11 36.7 12.1
    逐1 s定时扫描目录 502 51.1 11.2
    逐10 s定时扫描目录 3784 49.1 10.5
    DownLoad: Download CSV

    Table  2  Algorithms based on data-arrival scheduling in national operations of CMA Big Data and Cloud Platform

    序号 算法名称 数据源 所属业务系统 平均日调度次数 日平均调度延迟/ms
    1 时段内最高气温算法 中国地面逐小时数据 气象服务信息系统 2 25
    2 雷达单站产品生成算法 天气雷达全体扫标准格式基数据 面向实况应用的雷达实况产品系统 46375 15
    3 单站雷达流数据处理算法 天气雷达逐仰角标准格式基数据 面向实况应用的雷达实况产品系统 507385 110
    4 基于位置的实况服务-天气现象反演算法 全国逐小时总云量融合实况分析产品(0.05×0.05)/中国区域多源融合实况分析1 km逐小时温湿风产品/中国区域多源融合实况分析1 km逐10 min降水产品 基于位置的实况服务系统 288 14
    5 微波辐射计数据产品文件质量控制算法 微波辐射计基数据 基础数据产品生产 64918 101
    6 逐小时区域极值统计算法 中国地面逐小时数据 基础统计产品加工系统 24 6
    7 基于GRAPES数值预报业务系统的全球模式预报算法 GRAPES_GFS 0.25°原始分辨率产品 数值预报业务系统产品制作平台 244 57
    8 天气雷达单站质量控制产品生成算法 天气雷达全体扫标准格式基数据 天气雷达拼图系统V3.0 46075 98
    9 天气雷达组网拼图基本反射率因子图像产品生成算法 天气雷达拼图系统V3.0组网基本反射率因子产品 天气雷达拼图系统V3.0 240 5
    10 天气雷达组网拼图组合反射率因子图像产品生成算法 天气雷达拼图系统V3.0组网组合反射率因子产品 天气雷达拼图系统V3.0 240 31
    11 天气雷达组网拼图回波顶高图像产品生成算法 天气雷达拼图系统V3.0组网回波顶高产品 天气雷达拼图系统V3.0 240 5
    12 天气雷达组网拼图垂直积分液态水含量图像产品生成算法 天气雷达拼图系统V3.0组网垂直积分液态水含量产品 天气雷达拼图系统V3.0 240 5
    13 天气雷达组网拼图1 h降水估测图像产品生成算法 天气雷达拼图系统V3.0组网1 h降水估测产品 天气雷达拼图系统V3.0 240 5
    14 天气雷达组网拼图雨强图像产品生成算法 天气雷达拼图系统V3.0组网雨强产品 天气雷达拼图系统V3.0 240 4
    15 天气雷达组网拼图3 h降水估测图像产品生成算法 天气雷达拼图系统V3.0组网3 h降水估测产品 天气雷达拼图系统V3.0 24 4
    16 天气雷达组网拼图24 h降水估测图像产品生成算法 天气雷达拼图系统V3.0组网24 h降水估测产品 天气雷达拼图系统V3.0 24 4
    17 天气雷达组网拼图未经质量控制组合反射率因子图像产品生成算法 天气雷达拼图系统V3.0组网未质控组合反射率因子产品 天气雷达拼图系统V3.0 240 5
    18 GFS原始数据绘图算法 GRAPES_GFS 0.25°原始分辨率产品 西北区域人影指挥系统 244 57
    19 MESO原始数据绘图算法 中国气象局区域模式CMA-MESO数值预报产品(0.03×0.03) 西北区域人影指挥系统 368 56
    DownLoad: Download CSV

    Table  2  Algorithms based on data-arrival scheduling in national operations of CMA Big Data and Cloud Platform

    序号 算法名称 数据源 所属业务系统 平均日调度次数 日平均调度延迟/ms
    1 时段内最高气温算法 中国地面逐小时数据 气象服务信息系统 2 25
    2 雷达单站产品生成算法 天气雷达全体扫标准格式基数据 面向实况应用的雷达实况产品系统 46375 15
    3 单站雷达流数据处理算法 天气雷达逐仰角标准格式基数据 面向实况应用的雷达实况产品系统 507385 110
    4 基于位置的实况服务-天气现象反演算法 全国逐小时总云量融合实况分析产品(0.05×0.05)/中国区域多源融合实况分析1 km逐小时温湿风产品/中国区域多源融合实况分析1 km逐10 min降水产品 基于位置的实况服务系统 288 14
    5 微波辐射计数据产品文件质量控制算法 微波辐射计基数据 基础数据产品生产 64918 101
    6 逐小时区域极值统计算法 中国地面逐小时数据 基础统计产品加工系统 24 6
    7 基于GRAPES数值预报业务系统的全球模式预报算法 GRAPES_GFS 0.25°原始分辨率产品 数值预报业务系统产品制作平台 244 57
    8 天气雷达单站质量控制产品生成算法 天气雷达全体扫标准格式基数据 天气雷达拼图系统V3.0 46075 98
    9 天气雷达组网拼图基本反射率因子图像产品生成算法 天气雷达拼图系统V3.0组网基本反射率因子产品 天气雷达拼图系统V3.0 240 5
    10 天气雷达组网拼图组合反射率因子图像产品生成算法 天气雷达拼图系统V3.0组网组合反射率因子产品 天气雷达拼图系统V3.0 240 31
    11 天气雷达组网拼图回波顶高图像产品生成算法 天气雷达拼图系统V3.0组网回波顶高产品 天气雷达拼图系统V3.0 240 5
    12 天气雷达组网拼图垂直积分液态水含量图像产品生成算法 天气雷达拼图系统V3.0组网垂直积分液态水含量产品 天气雷达拼图系统V3.0 240 5
    13 天气雷达组网拼图1 h降水估测图像产品生成算法 天气雷达拼图系统V3.0组网1 h降水估测产品 天气雷达拼图系统V3.0 240 5
    14 天气雷达组网拼图雨强图像产品生成算法 天气雷达拼图系统V3.0组网雨强产品 天气雷达拼图系统V3.0 240 4
    15 天气雷达组网拼图3 h降水估测图像产品生成算法 天气雷达拼图系统V3.0组网3 h降水估测产品 天气雷达拼图系统V3.0 24 4
    16 天气雷达组网拼图24 h降水估测图像产品生成算法 天气雷达拼图系统V3.0组网24 h降水估测产品 天气雷达拼图系统V3.0 24 4
    17 天气雷达组网拼图未经质量控制组合反射率因子图像产品生成算法 天气雷达拼图系统V3.0组网未质控组合反射率因子产品 天气雷达拼图系统V3.0 240 5
    18 GFS原始数据绘图算法 GRAPES_GFS 0.25°原始分辨率产品 西北区域人影指挥系统 244 57
    19 MESO原始数据绘图算法 中国气象局区域模式CMA-MESO数值预报产品(0.03×0.03) 西北区域人影指挥系统 368 56
    DownLoad: Download CSV

    Table  3  Algorithms based on data-arrival scheduling in provincial operations of CMA Big Data and Cloud Platform

    序号 算法名称 数据源 所属业务系统 所属单位 平均日调度次数 日平均调度延迟/ms
    1 黑龙江天气雷达拼图V3.0组网回波顶高图像产品加工算法 黑龙江天气雷达拼图V3.0组网回波顶高产品 雷达拼图系统 黑龙江省气象局 240 47
    2 黑龙江天气雷达拼图V3.0组网3 h降水估测图像产品加工算法 黑龙江天气雷达拼图V3.0组网3 h降水估测产品(1 h分辨率) 雷达拼图系统 黑龙江省气象局 24 47
    3 黑龙江天气雷达拼图V3.0组网雨强图像产品加工算法 黑龙江天气雷达拼图V3.0组网雨强产品 雷达拼图系统 黑龙江省气象局 240 51
    4 黑龙江天气雷达拼图V3.0组网1 h降水估测图像产品加工算法 黑龙江天气雷达拼图V3.0组网1 h降水估测产品(6 min分辨率) 雷达拼图系统 黑龙江省气象局 240 44
    5 黑龙江天气雷达拼图V3.0组网24 h降水估测图像产品加工算法 黑龙江天气雷达拼图V3.0组网24 h降水估测产品(1 h分辨率) 雷达拼图系统 黑龙江省气象局 24 8
    6 黑龙江天气雷达拼图V3.0未经质量控制组网组合反射率因子图像产品加工算法 黑龙江天气雷达拼图V3.0组网未经质量控制组合反射率因子产品 雷达拼图系统 黑龙江省气象局 240 45
    7 黑龙江天气雷达拼图V3.0组网组合反射率因子图像产品加工算法 黑龙江天气雷达拼图V3.0组网组合反射率因子产品 雷达拼图系统 黑龙江省气象局 240 55
    8 黑龙江天气雷达拼图V3.0组网液态垂直积分液态水含量图像产品加工算法 黑龙江天气雷达拼图V3.0组网垂直积分液态水含量产品 雷达拼图系统 黑龙江省气象局 240 49
    9 单站逐仰角雷达基数据解码算法 天气雷达逐仰角标准格式基数据 实况融合业务系统 江西省气象局 23173 461
    10 单站全体扫雷达基数据解码算法 天气雷达全体扫标准格式基数据 实况融合业务系统 江西省气象局 1300 580
    11 单站雷达降水粒子相态识别算法 天气雷达逐仰角标准格式基数据 实况融合业务系统 江西省气象局 23173 91
    12 单站逐仰角X波段雷达基数据解码算法 X波段天气雷达逐仰角基数据 实况融合业务系统 江西省气象局 11674 531
    13 雷达基数据解析算法 天气雷达逐仰角标准格式基数据 威海市气象信息服务综合业务平台 山东省气象局 19320 8
    DownLoad: Download CSV

    Table  3  Algorithms based on data-arrival scheduling in provincial operations of CMA Big Data and Cloud Platform

    序号 算法名称 数据源 所属业务系统 所属单位 平均日调度次数 日平均调度延迟/ms
    1 黑龙江天气雷达拼图V3.0组网回波顶高图像产品加工算法 黑龙江天气雷达拼图V3.0组网回波顶高产品 雷达拼图系统 黑龙江省气象局 240 47
    2 黑龙江天气雷达拼图V3.0组网3 h降水估测图像产品加工算法 黑龙江天气雷达拼图V3.0组网3 h降水估测产品(1 h分辨率) 雷达拼图系统 黑龙江省气象局 24 47
    3 黑龙江天气雷达拼图V3.0组网雨强图像产品加工算法 黑龙江天气雷达拼图V3.0组网雨强产品 雷达拼图系统 黑龙江省气象局 240 51
    4 黑龙江天气雷达拼图V3.0组网1 h降水估测图像产品加工算法 黑龙江天气雷达拼图V3.0组网1 h降水估测产品(6 min分辨率) 雷达拼图系统 黑龙江省气象局 240 44
    5 黑龙江天气雷达拼图V3.0组网24 h降水估测图像产品加工算法 黑龙江天气雷达拼图V3.0组网24 h降水估测产品(1 h分辨率) 雷达拼图系统 黑龙江省气象局 24 8
    6 黑龙江天气雷达拼图V3.0未经质量控制组网组合反射率因子图像产品加工算法 黑龙江天气雷达拼图V3.0组网未经质量控制组合反射率因子产品 雷达拼图系统 黑龙江省气象局 240 45
    7 黑龙江天气雷达拼图V3.0组网组合反射率因子图像产品加工算法 黑龙江天气雷达拼图V3.0组网组合反射率因子产品 雷达拼图系统 黑龙江省气象局 240 55
    8 黑龙江天气雷达拼图V3.0组网液态垂直积分液态水含量图像产品加工算法 黑龙江天气雷达拼图V3.0组网垂直积分液态水含量产品 雷达拼图系统 黑龙江省气象局 240 49
    9 单站逐仰角雷达基数据解码算法 天气雷达逐仰角标准格式基数据 实况融合业务系统 江西省气象局 23173 461
    10 单站全体扫雷达基数据解码算法 天气雷达全体扫标准格式基数据 实况融合业务系统 江西省气象局 1300 580
    11 单站雷达降水粒子相态识别算法 天气雷达逐仰角标准格式基数据 实况融合业务系统 江西省气象局 23173 91
    12 单站逐仰角X波段雷达基数据解码算法 X波段天气雷达逐仰角基数据 实况融合业务系统 江西省气象局 11674 531
    13 雷达基数据解析算法 天气雷达逐仰角标准格式基数据 威海市气象信息服务综合业务平台 山东省气象局 19320 8
    DownLoad: Download CSV
  • [1]
    Tian Z J, Huang Z C, Zhang Y N. Review of task scheduling methods in cloud computing environment. Comput Eng Appl, 2021, 57(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202102003.htm
    [2]
    Chen H H, Cui X L, Wang Y J. Summary of task scheduling algorithms based on multiple cloud environments. Appl Res Comput, 2023, 40(10): 2889-2895. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202310002.htm
    [3]
    Yang G, Zhao X, Huang J. Survey on task scheduling algorithms for cloud computing. Comput Syst Appl, 2020, 29(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202003003.htm
    [4]
    Cao Y, Li X H, Liu Z L, et al. Review of big data workflow orchestration and management system in cloud environment. Comput Mod, 2022(1): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202201007.htm
    [5]
    Zhao L C, Shen W H, Xiao H D, et al. The application of high performance computing technology in meteorological field. J Appl Meteor Sci, 2016, 27(5): 550-558. doi:  10.11898/1001-7313.20160504
    [6]
    Zhao C Y, Sun J, Xiao H D, et al. Application research of workflow-based meteorological job scheduling on super-computing. Comput Technol Dev, 2022, 32(9): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202209030.htm
    [7]
    Zhang M, Yang X, Zou L, et al. Application of job scheduling software LoadLeveler in meteorological mode. Meteor Sci Technol, 2021, 49(1): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202101010.htm
    [8]
    Zhu Z, Shi C X, Liu R X, et al. Research and development of three-dimensional cloud merging analysis operation system (3DCloudA-V1.0) in China. Meteor Sci Technol, 2021, 49(1): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202101009.htm
    [9]
    Ma Q, Yan J H, Wei M, et al. Implementation and application of BCC CMIP6 experimental data sharing platform. J Appl Meteor Sci, 2022, 33(5): 617-627. doi:  10.11898/1001-7313.20220509
    [10]
    Zhang J, Sun J, Shen X S, et al. Key model technologies of CMA-GFS V4.0 and application to operational forecast. J Appl Meteor Sci, 2023, 34(5): 513-526. doi:  10.11898/1001-7313.20230501
    [11]
    He W C, Gao F, Xu Y, et al. Design and implementation of special data service system for climate monitoring. J Appl Meteor Sci, 2012, 23(5): 624-630. http://qikan.camscma.cn/article/id/20120514
    [12]
    Xiong A Y, Zhao F, Wang Y, et al. Design and implementation of China Integrated Meteorological Information Sharing System(CIMISS). J Appl Meteor Sci, 2015, 26(4): 500-512. doi:  10.11898/1001-7313.20150412
    [13]
    Sun C, Huo Q, Ren Z H, et al. Design and implementation of surface meteorological data statistical processing system. J Appl Meteor Sci, 2018, 29(5): 630-640. doi:  10.11898/1001-7313.20180511
    [14]
    Lü Z L, Bai X P, Xue F. WebGIS-based meteorological service system and its key technology. J Appl Meteor Sci, 2018, 29(1): 120-128. doi:  10.11898/1001-7313.20180111
    [15]
    Feng D E, Tang W, Wang M H, et al. Key technologies of automatic processing of meteorological service products based on WebGIS. Meteor Environ Sci, 2020, 43(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQX202001017.htm
    [16]
    Gu W J, Wang P, Dai Q, et al. Design and implementation of international meteorological communication data collection and management system. Meteor Sci Technol, 2023, 51(1): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202301004.htm
    [17]
    Li Y, Wang G F. Design and implementation of Meteorological Disaster Risk Management System. J Appl Meteor Sci, 2022, 33(5): 628-640.  10.11898/1001-7313.20220510
    [18]
    Yang H P, Zhang Q, Luo B, et al. Construction and application of Meteorological Integrated Command Platform. J Appl Meteor Sci, 2023, 34(1): 117-128. doi:  10.11898/1001-7313.20230110
    [19]
    Liang L, Ma S Q, Teng Y P, et al. Construction and application of Weather Radar Aerial Ecological Monitoring System. J Appl Meteor Sci, 2023, 34(5): 630-640. doi:  10.11898/1001-7313.20230511
    [20]
    Huo Q, He W C, He L, et al. Design and application of algorithm intensive environment for CMA big data and cloud platform. J Appl Meteor Sci, 2024, 35(1): 80-89. doi:  10.11898/1001-7313.20240107
    [21]
    Zhao F, Xiong A Y, Zhang X Y, et al. Technical characteristics of the architecture design of China Integrated Meteorological Information Sharing System. J Appl Meteor Sci, 2017, 28(6): 750-758. doi:  10.11898/1001-7313.20170610
    [22]
    Sun C, Xiao W M, Chen Y T, et al. Design of real-time monitoring system of integrated meteorological operation. Adv Meteor Sci Technol, 2018, 8(1): 153-157. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201801037.htm
    [23]
    Zeng C Y, Li J X. Redis application in cache system. Microcomput Appl, 2013, 32(12): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WXJY201312006.htm
    [24]
    Li Y, Gu N J, Huang Z S, et al. Research and optimization of redis cluster reliability. Comput Eng, 2018, 44(5): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201805007.htm
    [25]
    Jaramillo D, Nguyen D V, Smart R. Leveraging Microservices Architecture by Using Docker Technology//Southeast Con. IEEE, 2016: 1-5.
    [26]
    Xu Y J, Ni X L, Zheng B, et al. Design and application of live weather data service interface based on user's location. Comput Syst Appl, 2023, 32(5): 77-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYY202305009.htm
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(6)

    Article views (1163) PDF downloads(76) Cited by()
    • Received : 2024-02-26
    • Accepted : 2024-05-30
    • Published : 2024-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint