Citation: | Zeng Xiaotuan, Zou Chenxi, Fan Jiao, et al. Short-term precipitation correction based on GRU deep learning. J Appl Meteor Sci, 2024, 35(5): 513-525. DOI: 10.11898/1001-7313.20240501. |
[1] |
Zhang B, Zhang F H, Li X L, et al. Verification and assessment of "23·7" severe rainstorm numerical prediction in North China. J Appl Meteor Sci, 2024, 35(1): 17-32. doi: 10.11898/1001-7313.20240102
|
[2] |
Xing N, Zhong J Q, Lei L, et al. A probabilistic forecast experiment of short-duration heavy rainfall in Beijing based on CMA-BJ. J Appl Meteor Sci, 2023, 34(6): 641-654. doi: 10.11898/1001-7313.20230601
|
[3] |
Huang L P, Deng L T, Wang R C, et al. Key technologies of CMA-MESO and application to operational forecast. J Appl Meteor Sci, 2022, 33(6): 641-654. doi: 10.11898/1001-7313.20220601
|
[4] |
Xu C L, Wang J J, Huang L P. Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution. Acta Meteor Sinica, 2017, 75(6): 851-876.
|
[5] |
Xie Y Y, Wang J J. Preliminary study on the deviation and cause of precipitation prediction of GRAPES kilometer scale model in southwest complex terrain area. Acta Meteor Sinica, 2021, 79(5): 732-749.
|
[6] |
Wang B M, Liu X N. Distribution of China Cloud. Beijing: China Meteorological Press, 2009.
|
[7] |
Mo J F, Zhong S Q, Chen Y L, et al. Study on social-economic exposure degree model of basin flood hazard of extreme precipitation events in Guangxi. J Catastrophology, 2018, 33(2): 83-88. doi: 10.3969/j.issn.1000-811X.2018.02.016
|
[8] |
Lin Z M, Huang R, Qi Y F, et al. Construction and benefit evaluation of convective scale numerical weather prediction model system in Guangxi. J Meteor Res Appl, 2022, 43(2): 105-110.
|
[9] |
Boeing G. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems, 2016, 4(4). DOI: 10.3390/systems4040037.
|
[10] |
Yang X, Dai K, Zhu Y J. Progress and challenges of deep learning techniques in intelligent grid weather forecasting. Acta Meteor Sinica, 2022, 80(5): 649-667.
|
[11] |
Zhi X F, Zhao C. Heavy precipitation forecasts based on multi-model ensemble members. J Appl Meteor Sci, 2020, 31(3): 303-314. doi: 10.11898/1001-7313.20200305
|
[12] |
Wang J H, Li Q Q, Wang F, et al. Correction of precipitation forecast predicted by DERF2.0 during the pre-flood season in South China. J Appl Meteor Sci, 2021, 32(1): 115-128. doi: 10.11898/1001-7313.20210110
|
[13] |
Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304. doi: 10.11898/1001-7313.20220304
|
[14] |
Wu Q S, Han M, Liu M, et al. A comparison of optimal-score-based correction algorithms of model precipitation prediction. J Appl Meteor Sci, 2017, 28(3): 306-317. doi: 10.11898/1001-7313.20170305
|
[15] |
Li D, Lin W, Liu Q, et al. Application of machine learning to statistical evaluation of artificial rainfall enhancement. J Appl Meteor Sci, 2024, 35(1): 118-128. doi: 10.11898/1001-7313.20240110
|
[16] |
Zhang Y C, Long M S, Chen K Y, et al. Skilful nowcasting of extreme precipitation with NowcastNet. Nature, 2023, 619(7970): 526-532. doi: 10.1038/s41586-023-06184-4
|
[17] |
Sayeed A, Choi Y, Jung J, et al. A deep convolutional neural network model for improving WRF simulations. IEEE Trans Neural Netw Learn Syst, 2023, 34(2): 750-760. doi: 10.1109/TNNLS.2021.3100902
|
[18] |
Zhang C J, Zeng J, Wang H Y, et al. Correction model for rainfall forecasts using the LSTM with multiple meteorological factors. Meteor Appl, 2020, 27(1). DOI: 10.1002/met.1852.
|
[19] |
Han L, Chen M X, Chen K K, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts. Adv Atmos Sci, 2021, 38(9): 1444-1459. doi: 10.1007/s00376-021-0215-y
|
[20] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9: 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[21] |
Mi Q C, Gao X N, Li Y, et al. Application of deep learning method to drought prediction. J Appl Meteor Sci, 2022, 33(1): 104-114. doi: 10.11898/1001-7313.20220109
|
[22] |
Chung J, Gülçehre Ç, Cho K H, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Eprint ArXiv, 2014. DOI: 10.48550/arXiv.1412.3555.
|
[23] |
Zhuo J, Liao S S, Su C C, et al. Application of MLP in radar quantitative precipitation estimation. J Trop Meteor, 2023, 39(3): 289-299.
|
[24] |
Zhuo J, Chen S B, Zhou D J, et al. An approach for radar quantitative precipitation estimate based on fast dynamic categorical method. J Trop Meteor, 2018, 34(6): 856-864.
|
[25] |
Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. doi: 10.11898/1001-7313.20230404
|
[26] |
Zhang L, Wu L, Li F, et al. Indentification of weather radar abnormal data based on deep learning. J Appl Meteor Sci, 2023, 34(6): 694-705. doi: 10.11898/1001-7313.20230605
|
[27] |
Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016: 1874-1883.
|
[28] |
Zhang X Z. Parameter estimation method of Weibull distribution and its application. Acta Meteor Sinica, 1996, 54(1): 108-116.
|
[29] |
Laroche S, Zawadzki I. A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J Atmos Sci, 1994, 51(18): 2664-2682.
|
[30] |
Wilks D S. Statistical Methods in the Atmospheric Sciences. New York: Academic Press, 2019: 373-374.
|