[1]
|
McKee J L, Binns A D. A review of gauge-radar merging methods for quantitative precipitation estimation in hydrology. Canadian Water Resources Journal/Revue Canadienne Des Ressources Hydriques, 2016, 41(1/2): 186-203.
|
[2]
|
Trenberth K E, Smith L, Qian T T, et al. Estimates of the global water budget and its annual cycle using observational and model data. J Hydrometeorol, 2007, 8(4): 758-769. doi: 10.1175/JHM600.1
|
[3]
|
Li Q K. Research on the Algorithm of Three-Dimensional Precipitation Structure Inversion with GPM/DPR and CINRAD Data. Hefei: University of Science and Technology of China, 2021.
|
[4]
|
Jiang Y F, Kou L L, Chen A J, et al. Comparison of reflectivity factor of dual polarization radar and dual-frequency precipitation radar. J Appl Meteor Sci, 2020, 31(5): 608-619. doi: 10.11898/1001-7313.20200508
|
[5]
|
|
[6]
|
Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607
|
[7]
|
Wang H, Zhou H F, Wang C, et al. Accuracy validation of FY-4A temperature profile based on microwave radiometer and radiosonde. J Appl Meteor Sci, 2023, 34(3): 295-308. doi: 10.11898/1001-7313.20230304
|
[8]
|
Li R. Study on Structure Characteristics of Tropical Precipitation and Passive Microwave Retrieval of Precipitation with TRMM Rain Measuring Radar. Hefei: University of Science and Technology of China, 2005.
|
[9]
|
Wang C G. Research on Precipitation Detection by TRMM PR and Precipitation Estimation by Weather Radar. Nanjing: Nanjing University, 2003.
|
[10]
|
|
[11]
|
Wen J Q, Wang G L, Zhou R R, et al. Vertical structure characteristics of precipitation in Mêdog area of southeastern Tibet during the monsoon period. J Appl Meteor Sci, 2023, 34(5): 562-573. doi: 10.11898/1001-7313.20230505
|
[12]
|
Fu Y F, Yu R C, Xu Y P, et al. Analysis on precipitation structures of two heavy rain cases by using TRMM PR and IMI. Acta Meteor Sinica, 2003, 61(4): 421-431. doi: 10.3321/j.issn:0577-6619.2003.04.004
|
[13]
|
|
[14]
|
Shang J, Guo Y, Wu Q, et al. Airborne field campaign results of Ka-band precipitation measuring radar in China. J Appl Meteor Sci, 2011, 22(5): 590-596. doi: 10.3969/j.issn.1001-7313.2011.05.009
|
[15]
|
Wu Q M, Cheng M H, Miao C S. Study of microwave characteristics of rainfall over South China and Yangtze River Basin using TRMM data. J Appl Meteor Sci, 2003, 14(2): 206-214. doi: 10.3969/j.issn.1001-7313.2003.02.008
|
[16]
|
Chiu L, Serafino G, Teng W L. Applications of Tropical Rainfall Measuring Mission(TRMM) Data//IGARSS 2001. Scanning the Present and Resolving the Future. IEEE 2001 International Geoscience and Remote Sensing Symposium. Sydney, NSW, Australia. IEEE, 2001: 2118-2120.
|
[17]
|
Chiu L S, Liu Z, Rui H L, et al. Tropical Rainfall Measuring Mission Data and Access Tools//Earth Science Satellite Remote Sensing. Berlin, Heidelberg: Springer, 2006: 202-219.
|
[18]
|
Kojima M, Miura T, Furukawa K, et al. Dual-frequency Precipitation radar(DPR) Development on the Global Precipitation Measurement(GPM) Core Observatory//Earth Observing Missions and Sensors: Development, Implementation, and Characterization Ⅱ. Kyoto, Japan. SPIE, 2012, 8528: 234-243.
|
[19]
|
Masaki T, Kubota T, Oki R, et al. Current status of GPM/DPR Level 1 Algorithm Development and DPR Calibration//2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). Milan, Italy. IEEE, 2015: 2615-2618.
|
[20]
|
Zhang P, Gu S, Chen L, et al. FY-3G satellite instruments and precipitation products: First report of China's Fengyun rainfall mission in-orbit. J Remote Sensing, 2023, 3. DOI: 10.34133/remotesensing.0097.
|
[21]
|
Shang J, Yang H, Yin H G, et al. Performance analysis of China dual-frequency airborne precipitation radar. IEEE Aerosp Electron Syst Mag, 2013, 28(4): 16-27. doi: 10.1109/MAES.2013.6506825
|
[22]
|
Hossan A, Jones W L. Ku- and Ka-band ocean surface radar backscatter model functions at low-incidence angles using full-swath GPM DPR data. Remote Sens, 2021, 13(8). DOI: 10.3390/rs13081569.
|
[23]
|
Barrick D. Wind dependence of quasi-specular microwave sea scatter. IEEE Trans Anntenas Propag, 1974, 22(1): 135-136. doi: 10.1109/TAP.1974.1140736
|
[24]
|
Brown G S. Quasi-specular Scattering from the Air-sea IKnterface//Geernaert G L, Plant W L. Surface Waves and Fluxes. Dordrecht: Springer, 1990: 1-39.
|
[25]
|
Freilich M H, Vanhoff B A. The relationship between winds, surface roughness, and radar backscatter at low incidence angles from TRMM precipitation radar measurements. J Atmos Oceanic Technol, 2003, 20(4): 549-562. doi: 10.1175/1520-0426(2003)20<549:TRBWSR>2.0.CO;2
|
[26]
|
Tanelli S, Durden S L, Im E. Simultaneous measurements of Ku- and Ka-band sea surface cross sections by an airborne Radar. IEEE Geosci Remote Sens Lett, 2006, 3(3): 359-363. doi: 10.1109/LGRS.2006.872929
|
[27]
|
Valenzuela G R. Theories for the interaction of electromagnetic and oceanic waves-A review. Bound Layer Meteor, 1978, 13(1): 61-85.
|
[28]
|
Liao M, Zhang P, Liu J, et al. Accuracy and stability of radio occultation dry temperature profiles from Fengyun satellites. J Appl Meteor Sci, 2023, 34(3): 270-281. doi: 10.11898/1001-7313.20230302
|
[29]
|
Xing C Y, Wu S A, Zhu J J. Comparison on the circulation background of tropical cyclone affecting the South China Sea based upon different reanalysis datasets. J Appl Meteor Sci, 2023, 34(2): 179-192. doi: 10.11898/1001-7313.20230205
|
[30]
|
Yang R F, Yu Y, Li L H, et al. Characteristics of surface NRCS and the effect on the spaceborne precipitation radar system design. J Electron Inf Technol, 2013, 35(11): 2721-2727.
|
[31]
|
Holliday D, St-Cyr G, Woods N E. A radar ocean imaging model for small to moderate incidence angles. Int J Remote Sens, 1986, 7(12): 1809-1834. doi: 10.1080/01431168608948971
|
[32]
|
Liu Q H, Weng F Z, English S J. An improved fast microwave water emissivity model. IEEE Trans Geosci Remote Sens, 2011, 49(4): 1238-1250. doi: 10.1109/TGRS.2010.2064779
|
[33]
|
Stephen J, Hewison T J. A Fast Generic Millimetre-wave Emissivity Model//Proc of SPIE, 1998, 3503. DOI: 10.1117/12.319490.
|
[34]
|
Wu J. Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci, 1990, 25(1): 37-48. doi: 10.1029/RS025i001p00037
|
[35]
|
Nouguier F, Mouche A, Rascle N, et al. Analysis of dual-frequency ocean backscatter measurements at Ku- and Ka-bands using near-nadir incidence GPM radar data. IEEE Geosci Remote Sens Lett, 2016, 13(9): 1310-1314. doi: 10.1109/LGRS.2016.2583198
|
[36]
|
Walsh E, Vandemark D, Friehe C, et al. Measuring sea surface mean square slope with a 36-GHz scanning. J Geophys Res Atmos, 1998, 1031(C6): 12613-12628.
|