Citation: | Feng Jinqin, Pan Jiawen, He Qingfang, et al. Characteristics and evolution of radar polarization during extremely persistent heavy rainfall. J Appl Meteor Sci, 2024, 35(5): 577-589. DOI: 10.11898/1001-7313.20240506. |
Fig. 5 Time-distance Hovmölller diagrams of composite reflectivity along line AB and line CD in Fig. 4 of Longyan Radar from 2200 BT 26 May to 0300 BT 27 May in 2022
Fig. 6 Sections of ZH, ZDR and KDP from 26 May to 27 May in 2022 along line EF in Fig. 4
Fig. 10 Sections of ZH, ZDR and KDP (the shaded) and wind field (the vector) along line EF in Fig. 4 from 26 May to 27 May in 2022
[1] |
Li J, Yu R C, Sun W. Duration and seasonality of the hourly extreme rainfall in the central-eastern part of China. Acta Meteor Sinica, 2013, 71(4): 652-659.
|
[2] |
Wu M W, Luo Y L, Chen F, et al. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J Appl Meteor Climatol, 2019, 58(8): 1799-1819. doi: 10.1175/JAMC-D-18-0284.1
|
[3] |
Chyi D, He L F, Wang X M, et al. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021. J Appl Meteor Sci, 2022, 33(1): 1-15.
|
[4] |
Qi D, Wang C W, Bai X M, et al. Characteristics and causes of extreme heavy rainfall in Heilongjiang Province during August 2023. J Appl Meteor Sci, 2024, 35(3): 257-271.
|
[5] |
Wang J Y, Li Z, Wang X K, et al. Temporal and spatial distribution characteristics of flash heavy rain in Henan during rainy season. Torrential Rain Disasters, 2019, 38(2): 152-160.
|
[6] |
Tang Y L, Xu G R, Wan R. Temporal and spatial distribution characteristics of short-duration heavy rainfall in the Yangtze River Basin during the main flood season of 2020. Trans Atmos Sci, 2022, 45(2): 212-224.
|
[7] |
Zhao H J, Pan L, Mao Z Q. Analysis on characteristics of physical quantity of persistent short-time severe rainfall in Shandong. J Mar Meteor, 2023, 43(1): 63-74.
|
[8] |
Zhang C, Huang X G, Fei J F, et al. Spatiotemporal characteristics and associated synoptic patterns of extremely persistent heavy rainfall in Southern China. J Geophys Res Atmos, 2021, 126(1). DOI: 10.1029/2022JD033253.
|
[9] |
Liu H S, Huang X G, Fei J F, et al. Spatiotemporal features and associated synoptic patterns of extremely persistent heavy rainfall over China. J Geophys Res Atmos, 2022, 127(15). DOI: 10.1029/2022JD036604.
|
[10] |
Liu F F, Zheng Y G, Luo Q, et al. Comparison of characteristics of light precipitation and short-time heavy precipitation over Beijing, Tianjin, Hebei and neighbouring areas. J Appl Meteor Sci, 2023, 34(5): 619-629.
|
[11] |
Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428.
|
[12] |
Hu Y J, Zhang W, Zhao Y C, et al. Mesoscale feature analysis on a warm-sector torrential rain event in southeastern coast of Fujian on 7 May 2018. Meteor Mon, 2020, 46(5): 629-642.
|
[13] |
Guo F Y, Diao X G, Chu Y J, et al. Dual polarization radar characteristics of severe downburst occurred in weak vertical wind shear. J Appl Meteor Sci, 2023, 34(6): 681-693.
|
[14] |
Pan J W, Peng J, Wei M, et al. Analysis of an extreme flash rain event under the background of subtropical high based on dual-polarization phased array radar observations. Acta Meteor Sinica, 2022, 80(5): 748-764.
|
[15] |
Sun Y, Ren G, Sun H P, et al. Features of phased-array dual polarization radar observation during an anti-aircraft gun hail suppression operation. J Appl Meteor Sci, 2023, 34(1): 65-77.
|
[16] |
Chen X L, Xu T, Wang R, et al. Fine observation characteristics and causes of "9·7" extreme heavy rainstorm over Pearl River Delta, China. J Appl Meteor Sci, 2024, 35(1): 1-16.
|
[17] |
Feng J Q, Zhang S S, Wu C F, et al. Application of dual polarization weather radar products to severe convective weather in Fujian. Meteor Mon, 2018, 44(12): 1565-1574.
|
[18] |
Liu Z, Guo F X, Zheng D, et al. Lightning activities in a convection cell dominated by heavy warm cloud precipitation. J Appl Meteor Sci, 2020, 31(2): 185-196.
|
[19] |
Luo C R, Sun Z B, Wei M, et al. An extended application of the VAP method for wind field retrieval near the tropical cyclone center with single-Doppler radar data. Acta Meteor Sinica, 2011, 69(1): 170-180.
|
[20] |
Doswell C A, Brooks H E, Maddox R A. Flash flood forecasting: An ingredients-based methodology. Wea Forecasting, 1996, 11(4): 560-581.
|
[21] |
Zhang P Y, Chen R L. A study of heavy rain signature recognition by radar velocity images. J Appl Meteor Sci, 1995, 6(3): 373-378.
|
[22] |
Yu X D. Nowcasting thinking and method of flash heavy rain. Torrential Rain Disasters, 2013, 32(3): 202-209.
|
[23] |
Ryzhkov A V, Zhuravlyov V B, Rybakova N A. Preliminary results of X-band polarization radar studies of clouds and precipitation. J Atmos Oceanic Technol, 1994, 11(1): 132-139.
|
[24] |
Mattos E V, Machado L A T, Williams E R, et al. Electrification life cycle of incipient thunderstorms. J Geophys Res Atmos, 2017, 122(8): 4670-4697.
|
[25] |
Wang K, Wang X H, Xia X, et al. Microphysical characteristics of the extremely heavy rainstorm observed by Jiangsu polarimetric radars network in southeastern Jiangsu on July 17, 2019. J Meteor Sci, 2022, 42(5): 610-621.
|
[26] |
Snyder J C, Bluestein H B, Dawson D T, et al. Simulations of polarimetric, X-band radar signatures in supercells. Part Ⅱ: ZDR columns and rings and KDP columns. J Appl Meteor Climatol, 2017, 56(7): 2001-2026.
|
[27] |
Jung C J, Jou B J D. Bulk microphysical characteristics of a heavy-rain complex thunderstorm system in the Taipei Basin. Mon Wea Rev, 2023, 151(4): 877-896.
|
[28] |
Wen L, Zhao K, Zhang G F, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J Geophys Res Atmos, 2016, 121(5): 2265-2282.
|
[29] |
Yang Z L, Zhao K, Xu K, et al. Microphysical characteristics of extreme convective precipitation over the Yangtze-Huaihe River Basin during the Meiyu season based on polarimetric radar data. Acta Meteor Sinica, 2019, 77(1): 58-72.
|
[30] |
Williams E R, Weber M E, Orville R E. The relationship between lightning type and convective state of thunderclouds. J Geophys Res, 1989, 94(D11): 13213-13220.
|
[31] |
Xiao H, Wang X B, Zhou F F, et al. A three-dimensional numerical simulation on microphysical processes of torrential rainstorms. Chinese J Atmos Sci, 2004, 28(3): 385-404.
|