Citation: | Guo Feiyan, Ding Feng, Chu Yingjia, et al. Comparison of two damaging wind events caused by strong downbursts. J Appl Meteor Sci, 2024, 35(5): 590-605. DOI: 10.11898/1001-7313.20240507. |
Fig. 5 Reflectivity factor at 1.5° elevation and radial velocity at 0.5°, 6.0°, 14.6°elevation of Weifang Radar at 1858 BT and 1904 BT on 6 Aug 2017 (the blue dashed line and the blue solid line denote 45 dBZ and 55 dBZ isolines of reflectivity factor, respecitvely) (a)1.5° elevation reflectivity factor at 1858 BT, (b)1.5° elevation reflectivity factor at 1904 BT, (c)0.5° elevation radial velocity at 1858 BT,(d)0.5° elevation radial velocity at 1904 BT,(e)6.0° elevation radial velocity at 1858 BT,(f)6.0° elevation radial velocity at 1904 BT, (g)14.6° elevation radial velocity at 1858 BT,(h)14.6° elevation radial velocity at 1904 BT
Fig. 6 Cross-sections of horizontal reflectivity factor and radial velocity along 236.6° radial direction of Jinan Radar on 2 Jun 2017 and along 24° radial direction of Weifang Radar on 6 Aug 2017 (black, red and blue horizontal solid lines denote heights of the 0 ℃ layer, -10 ℃ layer and -20 ℃ layer, respectively) (a)reflectivity factor cross-section of Jinan Radar at 1833 BT 2 Jun,(b)reflectivity factor cross-section of Jinan Radar at 1839 BT 2 Jun,(c)reflectivity factor cross-section of Jinan Radar at 1845 BT 2 Jun,(d)radial velocity cross-sections of Jinan Radar at 1833 BT 2 Jun, (e)radial velocity cross-section of Jinan Radar at 1839 BT 2 Jun,(f)radial velocity cross-section of Jinan Radar at 1845 BT 2 Jun, (g)reflectivity factor cross-section of Weifang Radar at 1853 BT 6 Aug,(h)reflectivity factor cross-section of Weifang Radar at 1858 BT 6 Aug, (i)reflectivity factor cross-section of Weifang Radar at 1904 BT 6 Aug,(j)radial velocity cross-section of Weifang Radar at 1853 BT 6 Aug, (k)radial velocity cross-section of Weifang Radar at 1958 BT 6 Aug,(l)radial velocity cross-section of Weifang Radar at 1904 BT 6 Aug
Fig. 7 Spatial distribution of surface temperature (the isoline, unit:℃) at 1830 BT(a), 1840BT(b), 1845 BT(c) on 2 Jun 2017 and 1850 BT(d), 1900 BT(e),1905 BT(f) on 6 Aug 2017 and composite reflectivity factor and storm locations of Jinan Radar (1828 BT, 1839 BT, 1845 BT) and Weifang Radar (1847 BT, 1858 BT, 1904 BT) (green solid circles denote locations of 6·2 supercell storm and 8·6 strong storm paths, respectively)
[1] |
Wakimoto R M.Convectively Driven High Wind Events.Severe Convective Storms.Boston,MA:American Meteorological Society,2001:255-298.
|
[2] |
Fujita T T. Manual of Downburst Identification for Project NIMROD. SMRP Research Paper156, Chicago: University of Chicago, 1978.
|
[3] |
Fujita T T, Wakimoto R M. Five scales of airflow associated with a series of downbursts on 16 July 1980. Mon Wea Rev, 1981, 109(7): 1438-1456. doi: 10.1175/1520-0493(1981)109<1438:FSOAAW>2.0.CO;2
|
[4] |
Zheng Y G, Tian F Y, Meng Z Y, et al. Survey and multi-scale characteristics of wind damage caused by convective storms in the surrounding area of the capsizing accident of cruise ship "Dongfangzhixing". Meteor Mon, 2016, 42(1): 1-13.
|
[5] |
Weisman M L. The genesis of severe, long-lived bow echoes. J Atmos Sci, 1993, 50(4): 645-670. doi: 10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2
|
[6] |
Przybylinski R W. The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea Forecasting, 1995, 10(2): 203-218. doi: 10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2
|
[7] |
Ma S P, Wang X M, Yu X D. Environmental parameter characteristics of severe wind with extreme thunderstorm. J Appl Meteor Sci, 2019, 30(3): 292-301.
|
[8] |
Wang H, Li Y, Song L L, et al. Comparison of characteristics and environmental factors of thunderstorm gales over the Sichuan-Tibet Region. J Appl Meteor Sci, 2020, 31(4): 435-446.
|
[9] |
Yu X D. Thunderstorm and Strong Convection Prediction. Beijing: China Meteorological Press, 2020.
|
[10] |
Guo F Y, Diao X G, Ma Y, et al. Characteristics of the dual-polarization structure and raindrop size distribution of a squall line in Shandong. Acta Meteor Sinica, 2023, 81(2): 328-339.
|
[11] |
Mauri E L, Gallus Jr W A. Differences between severe and nonsevere warm-season, nocturnal bow echo environments. Wea Forecasting, 2021, 36(1): 53-74. doi: 10.1175/WAF-D-20-0137.1
|
[12] |
Guo F Y, Diao X G, Chu Y J, et al. Dual polarization radar characteristics of severe downburst occurred in weak vertical wind shear. J Appl Meteor Sci, 2023, 34(6): 681-693.
|
[13] |
Wakimoto R M, Bringi V N. Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon Wea Rev, 1988, 116(8): 1521-1539. doi: 10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2
|
[14] |
Kuster C M, Heinselman P L, Schuur T J. Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea Forecasting, 2016, 31(3): 827-851. doi: 10.1175/WAF-D-15-0081.1
|
[15] |
Kuster C M, Bowers B R, Carlin J T, et al. Using KDP cores as a downburst precursor signature. Wea Forecasting, 2021, 36(4): 1183-1198. doi: 10.1175/WAF-D-21-0005.1
|
[16] |
Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191.
|
[17] |
Yu X D, Zhang A M, Zheng Y Y, et al. Doppler radar analysis on a series of downburst events. J Appl Meteor Sci, 2006, 17(4): 385-393.
|
[18] |
Duan Y P, Wang D H, Liu Y. Radar analysis and numerical simulation of strong convective weather for "Oriental Star" depression. J Appl Meteor Sci, 2017, 28(6): 666-677.
|
[19] |
Sheng J, Zheng Y G, Shen X Y, et al. Evolution and mechanism of a rare squall line in early spring of 2018. Meteor Mon, 2019, 45(2): 141-154.
|
[20] |
Ribeiro B Z, Weiss S J, Bosart L F. An analysis of the 3 May 2020 low-predictability derecho using a convection-allowing MPAS ensemble. Wea Forecasting, 2022, 37(2): 219-239. doi: 10.1175/WAF-D-21-0092.1
|
[21] |
Sun J S. The pattern structure and thermodynamic and dynamic processes of severe storms associated with linear convective gales. Meteor Mon, 2023, 49(1): 1-11.
|
[22] |
Wang X M, Yu X D, Fei H Y, et al. A review of downburst genesis mechanism and warning. Meteor Mon, 2023, 49(2): 129-145.
|
[23] |
French A J, Parker M D. The initiation and evolution of multiple modes of convection within a meso-alpha-scale region. Wea Forecasting, 2008, 23(6): 1221-1252. doi: 10.1175/2008WAF2222136.1
|
[24] |
Parker M D, Borchardt B S, Miller R L, et al. Simulated evolution and severe wind production by the 25-26 June 2015 nocturnal MCS from PECAN. Mon Weather Rev, 2020, 148(1): 183-209. doi: 10.1175/MWR-D-19-0072.1
|
[25] |
Wang X M, Yu X D, Zhou X G, et al. Study on the formation and evolution of "6.3" damage wind. Plateau Meteor, 2012, 31(2): 504-514.
|
[26] |
Xu C Y, Zhang L N, Xiao X, et al. Case analysis of damaging high winds generated by bow echoes in the presence of a cold vortex over the North China Plain. Acta Meteor Sinica, 2023, 81(1): 40-57.
|
[27] |
Diao X G, Li F, Wan F J. Comparative analysis on dual polarization features of two severe hail supercells. J Appl Meteor Sci, 2022, 33(4): 414-428.
|
[28] |
Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318.
|
[29] |
Li S S, Zhang D J, Hu L, et al. An analysis of a typical bow echo. J Meteor Environ, 2012, 28(4): 84-89.
|
[30] |
Chen S J, Zheng J F, Yang J, et al. Retrieval of air vertical velocity and droplet size distribution in squall line precipitation using C-FMCW radar. J Appl Meteor Sci, 2022, 33(4): 429-441.
|
[31] |
Emanuel K A. Atmospheric Convection. New York: Oxford University Press, 1994: 158-165.
|
[32] |
Markowski P, Richardson Y. Mesoscale Meteorology in Midlatitudes. Chichester: Wiley-Blackwell, 2010: 245-265.
|