Citation: | Zhu Enda, Wang Yaqiang, Zhao Yan, et al. Evaluation of weather forecasts from AI big models over East Asia. J Appl Meteor Sci, 2024, 35(6): 641-653. DOI: 10.11898/1001-7313.20240601. |
[1] |
Shen X S, Wang J J, Li Z C, et al. China's independent and innovative development of numerical weather prediction. Acta Meteor Sinica, 2020, 78(3): 451-476.
|
[2] |
Zeng Q C. Weather forecast-From empirical to physico-mathematical theory and super-computing system engineering. Physics, 2013, 42(5): 300-314.
|
[3] |
Ebert-Uphoff I, Hilburn K. The outlook for AI weather prediction. Nature, 2023, 619(7970): 473-474. doi: 10.1038/d41586-023-02084-9
|
[4] |
Ma L M. Development of artificial intelligence technology in weather forecast. Adv Earth Sci, 2020, 35(6): 551-560.
|
[5] |
Zeng X T, Zou C X, Fan J, et al. Short-term precipitation correction based on GRU deep learning. J Appl Meteor Sci, 2024, 35(5): 513-525.
|
[6] |
Li D, Lin W, Liu Q, et al. Application of machine learning to statistical evaluation of artificial rainfall enhancement. J Appl Meteor Sci, 2024, 35(1): 118-128.
|
[7] |
Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593.
|
[8] |
Wu P, Chang X T, Yuan W Y, et al. Fast data assimilation(FDA): Data assimilation by machine learning for faster optimize model state. J Comput Sci, 2021, 51. DOI: 10.1016/J.JOCS.2021.101323.
|
[9] |
Bonavita M, Laloyaux P. Machine learning for model error inference and correction. J Adv Model Earth Syst, 2020, 12(12). DOI: 10.1029/2020MS002232.
|
[10] |
Zhang H, Wang Y Q, Chen D D, et al. Temperature forecasting correction based on operational GRAPES-3 km model using machine learning methods. Atmosphere, 2022, 13(2). DOI: 10.3390/atmos13020362.
|
[11] |
Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304.
|
[12] |
Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437.
|
[13] |
Nearing G, Cohen D, Dube V, et al. Global prediction of extreme floods in ungauged watersheds. Nature, 2024, 627(8004): 559-563. doi: 10.1038/s41586-024-07145-1
|
[14] |
Zhuang X R, Zheng Y, Wang Y Q, et al. A deep learning-based precipitation nowcast model and its application over East China. Acta Meteor Sinica, 2023, 81(2): 286-303.
|
[15] |
Zhang L, Wu L, Li F, et al. Indentification of weather radar abnormal data based on deep learning. J Appl Meteor Sci, 2023, 34(6): 694-705.
|
[16] |
Yuan K, Li W J, Pang J. Hail identification technology in eastern Hubei based on decision tree algorithm. J Appl Meteor Sci, 2023, 34(2): 234-245.
|
[17] |
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269.
|
[18] |
Liu H Z, Xu H, Bao H J, et al. Application of machine learning classification algorithm to precipitation-induced landslides forecasting. J Appl Meteor Sci, 2022, 33(3): 282-292.
|
[19] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science. Nature, 2019, 566(7743): 195-204. doi: 10.1038/s41586-019-0912-1
|
[20] |
Xiong G Y, Zu F, Bao Y X, et al. Expressway pavement temperature forecast based on LSTM and prior knowledge. J Appl Meteor Sci, 2024, 35(1): 68-79.
|
[21] |
Zhang Y C, Long M S, Chen K Y, et al. Skillful nowcasting of extreme precipitation with NowcastNet. Nature, 2023, 619(7970): 526-532. doi: 10.1038/s41586-023-06184-4
|
[22] |
Bi K F, Xie L X, Zhang H H, et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature, 2023, 619(7970): 533-538. doi: 10.1038/s41586-023-06185-3
|
[23] |
Chen L, Zhong X H, Zhang F, et al. FuXi: A cascade machine learning forecasting system for 15-day global weather forecast. NPJ Clim Atmos Sci, 2023, 6. DOI: 10.1038/s41612-023-00512-1.
|
[24] |
Lam R, Sanchez-Gonzalez A, Willson M, et al. Learning skillful medium-range global weather forecasting. Science, 2023, 382(6677): 1416-1421. doi: 10.1126/science.adi2336
|
[25] |
Weyn J A, Durran D R, Caruana R. Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. J Adv Model Earth Syst, 2020, 12(9). DOI: 10.1029/2020MS002109.
|
[26] |
Rasp S, Thuerey N. Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weather bench. J Adv Model Earth Syst, 2021, 13(2). DOI: 10.1029/2020MS002405.
|
[27] |
Xiao H X, Zhang F, Wang Y Q, et al. Nowcasting of cloud images based on generative adversarial network and satellite data. J Appl Meteor Sci, 2023, 34(2): 220-233.
|
[28] |
Kurth T, Subramanian S, Harrington P, et al. FourCastNet: Accelerating Global High-Resolution Weather Forecasting Using Adaptive Fourier Neural Operators//Proceedings of the Platform for Advanced Scientific Computing Conference. Davos Switzerland. ACM, 2023: 1-11.
|
[29] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
|
[30] |
Zhou J, Cui G Q, Hu S D, et al. Graph neural networks: A review of methods and applications. AI Open, 2020, 1: 57-81. doi: 10.1016/j.aiopen.2021.01.001
|
[31] |
Ben Bouallègue Z, Clare M C A, Magnusson L, et al. The rise of data-driven weather forecasting: A first statistical assessment of machine learning-based weather forecasts in an operational-like context. Bull Am Meteor Soc, 2024, 105(6): E864-E883. doi: 10.1175/BAMS-D-23-0162.1
|
[32] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis. Quart J R Meteor Soc, 2020, 146(730): 1999-2049. doi: 10.1002/qj.3803
|
[33] |
Sun S, Shi C X, Pan Y, et al. Applicability assessment of the 1998-2018 CLDAS multi-source precipitation fusion dataset over China. J Meteor Res, 2020, 34(4): 879-892. doi: 10.1007/s13351-020-9101-2
|
[34] |
Ying M, Zhang W, Yu H, et al. An overview of the China Meteorological Administration tropical cyclone database. J Atmos Ocean Technol, 2014, 31(2): 287-301.
|
[35] |
Lu X Q, Yu H, Ying M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv Atmos Sci, 2021, 38(4): 690-699.
|
[36] |
Zeng J H, Yuan X, Ji P, et al. Effects of meteorological forcings and land surface model on soil moisture simulation over China. J Hydrol, 2021, 603. DOI: 10.1016/j.jhydrol.2021.126978.
|
[37] |
Hakim G J, Masanam S. Dynamical tests of a deep learning weather prediction model. Artif Intell Earth Syst, 2024, 3(3). DOI: 10.1175/AIES-D-23-0090.1.
|
[38] |
Hoskins B J, Karoly D J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci, 1981, 38(6): 1179-1196.
|
[39] |
Shen X S, Chen Q Y, Sun J, et al. Development of operational global medium-range forecast system in National Meteorological Centre. Meteor Mon, 2021, 47(6): 645-654.
|
[40] |
China Meteorological Administration. Weather Forecast Verification-Typhoon forecast. GB/T 38308-2019. Beijing: Standards Press of China, 2019: 2-3.
|
[41] |
Jiang Q, Li W Y, Fan Z D, et al. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J Hydrol, 2021, 595. DOI: 10.1016/j.jhydrol.2020.125660.
|