Citation: | Zheng Yu, Xu Fen, Wang Yaqiang. Boundary layer convergence line identification algorithm for weather radar based on R2CNN. J Appl Meteor Sci, 2024, 35(6): 654-666. DOI: 10.11898/1001-7313.20240602. |
[1] |
Doswell C A.Severe Convective Storms-An Overview.Severe Convective Storms.Boston:American Meteorological Society, 2001.
|
[2] |
Yu X D, Zhou X G, Wang X M. Progress in forecast technology of thunderstorm and strong convection near weather. Acta Meteor Sinica, 2012, 70(3): 311-337. doi: 10.3969/j.issn.1004-4965.2012.03.003
|
[3] |
Zheng Y G, Zhou K H, Sheng J, et al. Progress in monitoring, forecasting and early warning technology of severe convective weather. J Appl Meteor Sci, 2015, 26(6): 641-657.
|
[4] |
Sun J S, Dai J H, He L F, et al. Basic Principles and Technical Methods of Severe Convective Weather Forecast//Manual of Severe Convective Weather Forecast in China. Beijing: China Meteorological Press, 2014: 208-209.
|
[5] |
Su A F, Zheng Y G, Zhang N, et al. A review of research on boundary convergence lines triggering of deep and moist convection. Acta Meteor Sinica, 2022, 80(2): 177-189.
|
[6] |
Doswell C A. The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea Forecasting, 1987, 2(1): 3-16. doi: 10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2
|
[7] |
Wilson J W, Schreiber W E. Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon Wea Rev, 1986, 114(12): 2516-2536. doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2
|
[8] |
Huang Y P, Meng Z Y, Li W B, et al. General features of radar-observed boundary layer convergence lines and their associated convection over a sharp vegetation-contrast area. Geophys Res Lett, 2019, 46(5): 2865-2873. doi: 10.1029/2018GL081714
|
[9] |
Diao X G, Che J H, Li J, et al. Application of boundary convergence line in nowcasting warning of severe convective storm. Meteor Mon, 2009, 35(2): 29-33.
|
[10] |
Liu H J, Meng Z Y, Zhu Y N, et al. Convection initiation associated with a boundary layer convergence line over a real-world sharp vegetation-contrast area. Mon Wea Rev, 2023, 151(5): 1189-1212. doi: 10.1175/MWR-D-22-0083.1
|
[11] |
Mueller C K, Carbone R E. Dynamics of a thunderstorm outflow. J Atmos Sci, 1987, 44(15): 1879-1898. doi: 10.1175/1520-0469(1987)044<1879:DOATO>2.0.CO;2
|
[12] |
Harrison S J, Mecikalski J R, Knupp K R. Analysis of outflow boundary collisions in north-central Alabama. Wea Forecasting, 2009, 24(6): 1680-1690. doi: 10.1175/2009WAF2222268.1
|
[13] |
Zhang X, Huang X Y, Liu X A, et al. The hazardous convective storm monitoring of phased-array antenna radar at Daxing International Airport of Beijing. J Appl Meteor Sci, 2022, 33(2): 192-204.
|
[14] |
Zheng Y G, Zhang C X, Chen J, et al. Climatic background of warm-season convective weather in North China based on the NCEP analysis. Acta Scientiarum Naturalium Universitatis Pekinensis(Nat Ed), 2007, 43(5): 600-608. doi: 10.3321/j.issn:0479-8023.2007.05.003
|
[15] |
Fang Z L, Yu X D, Wang X M. Statistical analysis of drylines in Northeast China. Acta Meteor Sinica, 2020, 78(2): 260-276.
|
[16] |
Yu X D, Wang X M, Li W L, et al. Thunderstorm and Severe Convection Nowcasting. Beijing: China Meteorological Press, 2020.
|
[17] |
Hughes C P, Veron D E. A characterization of the Delaware sea breeze using observations and modeling. J Appl Meteor Climatol, 2018, 57(7): 1405-1421. doi: 10.1175/JAMC-D-17-0186.1
|
[18] |
Wang Y, Li S S, Guo L, et al. Doppler radar echo features of sea breeze front in Bohai Bay. Meteor Mon, 2006, 32(12): 23-27.
|
[19] |
LeMone M A. The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J Atmos Sci, 1973, 30(6): 1077-1091. doi: 10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2
|
[20] |
Guo F Y, Diao X G, Chu Y J, et al. Dual polarization radar characteristics of severe downburst occurred in weak vertical wind shear. J Appl Meteor Sci, 2023, 34(6): 681-693.
|
[21] |
Li J, Gu S S. Analysis of a disaster-causing wind process in Anhui on June 5th, 2009. J Anhui Agric Sci, 2010, 38(14): 7443-7445. doi: 10.3969/j.issn.0517-6611.2010.14.117
|
[22] |
He N, Ding Q L, Yu X D, et al. Statistical analysis of thunderstorm gust front characteristics in Beijing and surrounding areas. Acta Meteor Sinica, 2020, 78(2): 250-259.
|
[23] |
Xu F, Yang J, Zheng Y Y, et al. Improvement of the MIGFA technique for identifying gust front and its verification. Meteor Mon, 2016, 42(1): 44-53.
|
[24] |
Hermes L G, Witt A, Smith S D, et al. The gust-front detection and wind-shift algorithms for the terminal Doppler weather radar system. J Atmos Oceanic Technol, 1993, 10(5): 693-709. doi: 10.1175/1520-0426(1993)010<0693:TGFDAW>2.0.CO;2
|
[25] |
Yuan Y, Wang P, Wang D, et al. An algorithm for automated identification of gust fronts from Doppler radar data. J Meteor Res, 2018, 32(3): 444-455. doi: 10.1007/s13351-018-7089-7
|
[26] |
He L F, Chen T, Kong Q. A review of studies on prefrontal torrential rain in South China. J Appl Meteor Sci, 2016, 27(5): 559-569.
|
[27] |
Wu H Y, Sun J S, Mu R Q, et al. Analysis of extreme convective gusts caused by two types of weather storms during a strong convection event. Acta Meteor Sinica, 2023, 81(2): 205-217.
|
[28] |
Uyeda H, Zrnić D S. Automatic detection of gust fronts. J Atmos Oceanic Technol, 1986, 3(1): 36-50. doi: 10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2
|
[29] |
Klingle D L, Smith D R, Wolfson M M. Gust front characteristics as detected by Doppler radar. Mon Wea Rev, 1987, 115(5): 905-918. doi: 10.1175/1520-0493(1987)115<0905:GFCADB>2.0.CO;2
|
[30] |
Smalley D J, Bennett B J, Frankel R. MIGFA: The Machine Intelligent Gust Front Algorithm for NEXRAD. 32nd Conference on Radar Meteorology, 2005.
|
[31] |
Mueller C, Saxen T, Roberts R, et al. NCAR auto-nowcast system. Wea Forecasting, 2003, 18(4): 545-561. doi: 10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2
|
[32] |
Hwang Y, Yu T Y, Lakshmanan V, et al. Neuro-fuzzy gust front detection algorithm with S-band polarimetric radar. IEEE Trans Geosci Remote Sens, 2017, 55(3): 1618-1628. doi: 10.1109/TGRS.2016.2628520
|
[33] |
Wang N, Liu L P, Xu B X, et al. Recognizing low-altitude wind shear and convergence line with Doppler radar. J Appl Meteor Sci, 2007, 18(3): 314-320.
|
[34] |
Wei L Z. Automatic Recognition of Boundary Convergent Lines Based on Doppler Radar. Tianjin: Tianjin University, 2010.
|
[35] |
Feng W J. Convective Weather Forecast Based on Boundary Layer Convergence Lines. Tianjin: Tianjin University, 2012.
|
[36] |
Zheng J F. An Algorithm Research of Gust Front Identification for CINRAD. Chengdu: Chengdu University of Information Technology, 2013.
|
[37] |
Tu C Y. Research on Automatic Identification of Gust Fronts at Xi'an Xianyang Airport and its Application. Chengdu: Chengdu University of Information Technology, 2018.
|
[38] |
Leng L, Xiao Y J, Wu T. Automatic recognition of gust fronts based on mathematical morphology. Meteor Sci Technol, 2016, 44(1): 1-6.
|
[39] |
Wang Y T, Wang X M, Yu X D. Radar characteristics of straight-line damaging wind producing supercell storms. J Appl Meteor Sci, 2022, 33(2): 180-191.
|
[40] |
Zhang L, Li F, Wu L, et al. Non-precipitation identification technique for CINRAD/SAD dual polarimetric weather radar. J Appl Meteor Sci, 2022, 33(6): 724-735.
|
[41] |
Xu Y, Shao M R, Tang K, et al. Multiscale characteristics of two supercell tornados of Heilongjiang in 2021. J Appl Meteor Sci, 2022, 33(3): 305-318.
|
[42] |
Bai H, Yuan C, Pan X, et al. Environmental characteristics of extratropical cyclone tornadoes in Liaoning. J Appl Meteor Sci, 2023, 34(1): 104-116.
|
[43] |
Zheng J F, Zhang J, Zhu K Y, et al. Automatic identification and alert of gust fronts. J Appl Meteor Sci, 2013, 24(1): 117-125.
|
[44] |
Guo X X, Qu J H, Ye L M, et al. FY-4A/AGRI cloud detection method based on naive Bayesian algorithm. J Appl Meteor Sci, 2023, 34(3): 282-294.
|
[45] |
Li Z, Wu C, Liu L P, et al. Error evaluation and hydrometeor classification method of dual polarization phased array radar. J Appl Meteor Sci, 2022, 33(1): 16-28.
|
[46] |
Yuan K, Li W J, Pang J. Hail identification technology in eastern Hubei based on decision tree algorithm. J Appl Meteor Sci, 2023, 34(2): 234-245.
|
[47] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90.
|
[48] |
Yin X Y, Hu Z Q, Zheng J F, et al. Filling in the dual polarization radar echo occlusion based on deep learning. J Appl Meteor Sci, 2022, 33(5): 581-593.
|
[49] |
Zhang L, Wu L, Li F, et al. Indentification of weather radar abnormal data based on deep learning. J Appl Meteor Sci, 2023, 34(6): 694-705.
|
[50] |
Girshick R, Donahue J, Darrell T, et al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
|
[51] |
Girshick R. Fast R-CNN//IEEE International Conference on Computer Vision(ICCV), 2015: 1440-1448.
|
[52] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149.
|
[53] |
Lin T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2017: 936-944.
|
[54] |
Xu Y F, Zhao F, Mao C Y, et al. Gust front detection algorithm based on deep convolutional neural network. Torrential Rain Disasters, 2020, 39(1): 81-88.
|
[55] |
Bose S R, Kumar V S. Efficient inception V2 based deep convolutional neural network for real-time hand action recognition. IET Image Process, 2020, 14(4): 688-696.
|
[56] |
Lang Z X, Hu J R, Luo Y M, et al. Mask RCNN-CBAM: Automatic identification of gust front based on two-dimensional attention mechanism. Climate Change Res Lett, 2023, 12(3): 576-588.
|
[57] |
Tian H Y, Hu Z Q, Wang F Z, et al. Radar echo recognition of gust front based on deep learning. Remote Sens, 2024, 16(3). DOI: 10.3390/RS16030439.
|
[58] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional Networks for Biomedical Image Segmentation//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
|
[59] |
Jiang Y Y, Zhu X Y, Wang X B, et al. R2CNN: Rotational region CNN for orientation robust scene text detection. arXiv, 2017. DOI: 10.48550/arXiv1706.09579.
|
[60] |
Ma J Q, Shao W Y, Ye H, et al. Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans Multimed, 2018, 20(11): 3111-3122.
|
[61] |
Fu H, Fan X T, Yan Z Z, et al. Progress of object detection in remote sensing images based on deep learning. Remote Sens Technol Appl, 2022, 37(2): 290-305.
|
[62] |
Lan X, Wu S, Fu B Y, et al. Survey on deep learning in oriented object detection in remote sensing images. J Front Comput Sci Technol, 2024, 18(4): 861-877.
|
[63] |
Zhang L, Zhang Y S, Yu Y, et al. Survey on object detection in tilting box for remote sensing images. Natl Remote Sens Bull, 2022, 26(9): 1723-1743.
|
[64] |
He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2016: 770-778.
|
[65] |
Sutherland I E, Hodgman G W. Reentrant polygon clipping. Commun ACM, 1974, 17(1): 32-42.
|
[66] |
Amari S I. Backpropagation and stochastic gradient descent method. Neurocomputing, 1993, 5(4/5): 185-196.
|