能见度/km | 能见度等级 |
(1, 10] | 轻雾 |
(0.5, 1] | 大雾 |
(0.2, 0.5] | 浓雾 |
(0, 0.2] | 强浓雾 |
Citation: | Zhu Yuying, Zheng Yu, Zhang Bei. Visibility forecast based on PhyDNet-ATT deep learning algorithm. J Appl Meteor Sci, 2024, 35(6): 667-679. DOI: 10.11898/1001-7313.20240603. |
Table 1 Visibility assessment threshold
能见度/km | 能见度等级 |
(1, 10] | 轻雾 |
(0.5, 1] | 大雾 |
(0.2, 0.5] | 浓雾 |
(0, 0.2] | 强浓雾 |
Table 2 Forecasting effectiveness in testing sample
预报模型 | 均方根误差/km | 平均绝对偏差/km | 相关系数 |
PhyDNet-ATT-VIS预报 | 2.43 | 1.46 | 0.94 |
ECMWF产品 | 7.31 | 5.98 | 0.4 |
PWAFS产品 | 10.87 | 8.58 | 0.06 |
[1] |
Zhang X Y, Sun J Y, Wang Y Q, et al. Factors contributing to haze and fog in China. Chinese Sci Bull, 2013, 58(13): 1178-1187.
|
[2] |
Gultepe I, Tardif R, Michaelides S C, et al. Fog research: A review of past achievements and future perspectives. Pure Appl Geophys, 2007, 164(6): 1121-1159.
|
[3] |
Chen H S, Xu Y H, Gao Z Q, et al. Visibility forecast in Jiangsu Province based on the GCN-GRU model. Sci Rep, 2024. DOI: 10.1038/s41598-024-61572-8.
|
[4] |
Peláez-Rodríguez C, Pérez-Aracil J, Casanova-Mateo C, et al. Efficient prediction of fog-related low-visibility events with machine learning and evolutionary algorithms. Atmos Res, 2023, 295. DOI: 10.1016/j.atmosres.2023.106991.
|
[5] |
Kim B Y, Belorid M, Cha J W. Short-term visibility prediction using tree-based machine learning algorithms and numerical weather prediction data. Wea Forecasting, 2022, 37(12): 2263-2274. doi: 10.1175/WAF-D-22-0053.1
|
[6] |
Ding Y H, Liu Y J. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity. Science China(Earth Sciences), 2014, 44(1): 37-48.
|
[7] |
Liu Q, Sheng L F, Wang Y X, et al. Quantitative study of the effect of meteorological variables on the long-term variation of visibility in China. Clim Environ Res, 2016, 21(1): 47-55.
|
[8] |
Feng L, Tian H. Progress in fog prediction. J Nanjing Univ Inf Sci Technol(Nat Sci Ed), 2014, 6(1): 74-81.
|
[9] |
Gao S H, Qi Y L, Zhang S B, et al. Initial conditions improvement of sea fog numerical modeling over the Yellow Sea by Using cycling 3DVAR. Part Ⅰ: WRF numerical experiments. Periodical of Ocean University of China, 2010, 40(10): 1-9.
|
[10] |
Quan J N, Xu X D, Jia X C, et al. Multi-scale processes in severe haze events in China and their interactions with aerosols: Mechanisms and progresses. Chinese Sci Bull, 2020, 65(9): 810-824.
|
[11] |
Zhang G C. The progress of fog forecast operation in China. Adv Meteor Sci Tech, 2016, 6(2): 42-48.
|
[12] |
Gao R Z, Li X, Shi X M, et al. Comparative study on three algorithms of the visibility in Qingdao offshore areas based on WRF model. J Mar Meteor, 2018, 38(2): 28-35.
|
[13] |
Zhao X J, Xu J, Zhang Z Y, et al. Beijing regional environmental meteorology prediction system and its performance test of PM2.5 concentration. J Appl Meteor Sci, 2016, 27(2): 160-172.
|
[14] |
Wang T J, Jiang F, Deng J J, et al. Urban air quality and regional haze weather forecast for Yangtze River Delta region. Atmos Environ, 2012, 58: 70-83. doi: 10.1016/j.atmosenv.2012.01.014
|
[15] |
Hou M L, Wang H, Zhao T L, et al. A modeling study of the visibility and PBL key meteorological elements during a heavy fog-haze episode in Beijing-Tianjin-Hebei of China. Chinese J Atmos Sci, 2017, 41(6): 1177-1190.
|
[16] |
Zhao X J, Li Z M, Xu J. Modification and performance tests of visibility parameterizations for haze days. Environ Sci, 2019, 40(4): 1688-1696.
|
[17] |
Wang Y, Wu Z J, Ma N, et al. Statistical analysis and parameterization of the hygroscopic growth of the sub-micrometer urban background aerosol in Beijing. Atmos Environ, 2018, 175: 184-191. doi: 10.1016/j.atmosenv.2017.12.003
|
[18] |
Jiang J, Zhang G P, Gao J B. Main influencing factors of visibility in Beijing. J Appl Meteor Sci, 2018, 29(2): 188-199. doi: 10.11898/1001-7313.20180206
|
[19] |
Zhang S P, Ren Z P. The influence of the thermal effect of underlaying surface on the spring sea fog over the Yellow Sea: Observations and numerical simulations. Acta Meteor Sinica, 2010, 68(4): 439-449.
|
[20] |
Schlatter T W, Helms D, Reynolds D, et al. A Phenomenological Approach to the Specification of Observational Requirements. A Report to the Office of Science and Technology. National Weather Service, NOAA, 2005.
|
[21] |
Hu Y Y, Pang L, Wang Q G. Application of deep learning bias correction method to temperature grid forecast of 7-15 days. J Appl Meteor Sci, 2023, 34(4): 426-437. doi: 10.11898/1001-7313.20230404
|
[22] |
Yuan K, Li W J, Pang J. Hail identification technology in eastern Hubei based on decision tree algorithm. J Appl Meteor Sci, 2023, 34(2): 234-245. doi: 10.11898/1001-7313.20230209
|
[23] |
Han N F, Yang L, Chen M X, et al. Machine learning correction of wind, temperature and humidity elements in Beijing-Tianjin-Hebei Region. J Appl Meteor Sci, 2022, 33(4): 489-500. doi: 10.11898/1001-7313.20220409
|
[24] |
Liu D W, Mu H Z, He Q S, et al. A low visibility recognition algorithm based on surveillance video. J Appl Meteor Sci, 2022, 33(4): 501-512. doi: 10.11898/1001-7313.20220410
|
[25] |
Zhao L N, Lu S, Qi D, et al. Daily maximum air temperature forecast based on fully connected neural network. J Appl Meteor Sci, 2022, 33(3): 257-269.
|
[26] |
Xie S, Sun X G, Zhang S P, et al. Precipitation forecast correction in South China based on SVD and machine learning. J Appl Meteor Sci, 2022, 33(3): 293-304.
|
[27] |
Huang W, Niu R Y. The medium-term multi-model integration forecast experimentation for heavy rain based on support vector machine. Meteor Mon, 2017, 43(9): 1110-1116.
|
[28] |
Ren P, Chen M X, Cao W H, et al. Error analysis and correction of short-term numerical weather prediction under complex terrain based on machine learning. Acta Meteor Sinica, 2020, 78(6): 1002-1020.
|
[29] |
Baldwin M E, Kain J S, Lakshmivarahan S. Development of an automated classification procedure for rainfall systems. Mon Wea Rev, 2005, 133(4): 844-862. doi: 10.1175/MWR2892.1
|
[30] |
McGovern A, Gagne D J 2nd, Williams J K, et al. Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning. Mach Learn, 2014, 95(1): 27-50. doi: 10.1007/s10994-013-5343-x
|
[31] |
Zhong J T, Zhang X Y, Gui K, et al. Robust prediction of hourly PM2.5 from meteorological data using LightGBM. Natl Sci Rev, 2021, 8(10). DOI: 10.1093/nsr/nwaa307.
|
[32] |
Le Guen V, Thome N. Disentangling physical dynamics from unknown factors for unsupervised video prediction. IEEE, 2020. DOI: 10.48550/arXiv.2003.01460.
|
[33] |
Yuan K, Li W J, Li M, et al. Examination and evaluation of four machine deep learning algorithms for radar echo nowcasting in Wuhan Region. Meteor Mon, 2022, 48(4): 428-441.
|
[34] |
Ma Z F, Zhang H, Liu J. A survey of precipitation nowcasting based on deep learning. Comput Eng Sci, 2023, 45(10): 1731-1753. doi: 10.3969/j.issn.1007-130X.2023.10.003
|
[35] |
Li X, Zou X L, Zhuge X Y, et al. Improved himawari-8/AHI radiance data assimilation with a double cloud detection scheme. J Geophys Res Atmos, 2020, 125(13). DOI: 10.1029/2020JD03631.
|
[36] |
Su X, Liu M, Kang Z M, et al. Verification of short-range torrential rain forecast during the 2020 Jiangsu main flood season. Meteor Mon, 2022, 48(3): 357-371.
|
[37] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need//11th Conference on Neural Information Processing Systems(NIPS), 2017. DOI:
|
[38] |
Zhou Y K, Zhu B, Han Z W, et al. Analysis of visibility characteristics and connecting factors over the Yangtze River Delta Region during winter time. China Environ Sci, 2016, 36(3): 660-669. doi: 10.3969/j.issn.1000-6923.2016.03.005
|
[39] |
Liu X, Zheng Y, Zhuang X R, et al. Spatiotemporal convolutional approach for the short-term forecast of hourly heavy rainfall probability integrating numerical weather predictions and surface observations. Wea Forecasting, 2024, 39(3): 597-612. doi: 10.1175/WAF-D-23-0068.1
|
[40] |
Zhang Z Y, Zhao X J, Xiong Y J, et al. The fog/haze medium-range forecast experiments based on dynamic statistic method. J Appl Meteor Sci, 2018, 29(1): 57-69.
|
[41] |
Yin M X, Luo R T, Chen R Q, et al. Research on short-impending forecast of near-coast visibility for Leizhou peninsula based on GRU neural network. J Trop Meteor, 2023, 39(2): 267-275.
|
[42] |
Zhuang X R, Zheng Y, Wang Y Q, et al. A deep learning-based precipitation nowcast model and its application over East China. Acta Meteor Sinica, 2023, 81(2): 286-303.
|
[43] |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standardization Administration of the People's Republic of China. Grade of Fog Forecast. GB/T 27964-2011. Beijing: Standards Press of China, 2012.
|