序号 | 样品 | 粒径/μm | 来源 |
1 | PCM-10 | 10±5 | 天津科技大学 |
2 | PCM-100 | 100±50 | 天津科技大学 |
3 | 分子筛 | 10±5 | 吉林大学 |
4 | 复合盐 | 30±10 | 陕西中天火箭技术股份有限公司 |
5 | 改性淀粉 | 150±50 | 北京驻盟科技有限公司 |
6 | 有机膨润土 | 10±5 | 自制 |
7 | 钠基膨润土 | 10±5 | 自制 |
8 | NaCl | 10±5 | 自制 |
9 | CaCl2 | 10±5 | 自制 |
Citation: | Che Yunfei, Liu Xijing, Su Zhengjun, et al. Fog chamber and static detection of typical powdered hygroscopic catalysts. J Appl Meteor Sci, 2024, 35(6): 704-714. DOI: 10.11898/1001-7313.20240606. |
Table 1 Main compositions, sizes and sources of 9 catalysts
序号 | 样品 | 粒径/μm | 来源 |
1 | PCM-10 | 10±5 | 天津科技大学 |
2 | PCM-100 | 100±50 | 天津科技大学 |
3 | 分子筛 | 10±5 | 吉林大学 |
4 | 复合盐 | 30±10 | 陕西中天火箭技术股份有限公司 |
5 | 改性淀粉 | 150±50 | 北京驻盟科技有限公司 |
6 | 有机膨润土 | 10±5 | 自制 |
7 | 钠基膨润土 | 10±5 | 自制 |
8 | NaCl | 10±5 | 自制 |
9 | CaCl2 | 10±5 | 自制 |
[1] |
Wang Z L, Zhou X, Wu J H, et al. Weather conditions and cloud microphysical characteristics of an aircraft severe icing process. J Appl Meteor Sci, 2022, 33(5): 555-567. doi: 10.11898/1001-7313.20220504
|
[2] |
Guo X L. Atmospheric Physics and Weather Modification. Beijing: China Meteorological Press, 2010.
|
[3] |
Song R T, Wang W M. Effect test of artificial fog elimination test at Capital Airport. Meteor Sci Technol, 2000, 28(3): 42-45.
|
[4] |
Ma X C, Han G, Jiao S Y, et al. Microstructure characteristics of a heavy cold fog before and after liquid nitrogen seeding. Meteor Sci Technol, 2015, 43(5): 958-963. doi: 10.3969/j.issn.1671-6345.2015.05.028
|
[5] |
Zhang L, Wang S G, Shang K Z, et al. Review of researches on rainfall enhancement in China. Arid Meteor, 2006, 24(4): 73-81.
|
[6] |
Zheng G G, Chen Y, Wang P F, et al. Research Issues on Weather Modification. Beijing: China Meteorological Press, 2005: 20-21.
|
[7] |
Lu X, Guo F X, Wu Z Y, et al. Numerical simulation research on the effect of hail suppression by AgI seeding on microphysical process and the charge and discharge of hail cloud. Plateau Meteor, 2024, 43(1): 199-216.
|
[8] |
Hu S P, Lin W, Lin C C, et al. Physical inspection of randomized trial for the artificial rain enhancement experiment at Gutian from 2014 to 2022. J Appl Meteor Sci, 2023, 34(6): 706-716. doi: 10.11898/1001-7313.20230606
|
[9] |
Lou X F, Fu Y, Su Z J. Advances of silver iodide seeding agents for weather modification. J Appl Meteor Sci, 2021, 32(2): 146-159. doi: 10.11898/1001-7313.20210202
|
[10] |
Zheng G G, Guo X L. Status and development of sciences and technology for weather modification. Eng Sci, 2012, 14(9): 20-27.
|
[11] |
Lou X F, Shi Y, Li J M. Development and application of the cloud and seeding models in weather modification. Adv Meteor Sci Technol, 2016, 6(3): 75-82.
|
[12] |
Guo X L, Fang C G, Lu G X, et al. Progresses of weather modification technologies and applications in China from 2008 to 2018. J Appl Meteor Sci, 2019, 30(6): 641-650. doi: 10.11898/1001-7313.20190601
|
[13] |
Su Z J, Guo X L, Zhuge J, et al. Developing and testing of an expansion cloud chamber for cloud physics research. J Appl Meteor Sci, 2019, 30(6): 722-730. doi: 10.11898/1001-7313.20190608
|
[14] |
Xiao H, Shu W X, Fu D H, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles. J Appl Meteor Sci, 2021, 32(3): 257-271. doi: 10.11898/1001-7313.20210301
|
[15] |
Gao Y, Cai M, Cao Z Q, et al. Environmental conditions and cloud macro and micro features of "21·7" extreme heavy rainfall in Henan Province. J Appl Meteor Sci, 2022, 33(6): 682-695. doi: 10.11898/1001-7313.20220604
|
[16] |
Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401
|
[17] |
Yang X B, Chen L J, Liu Y Y. Spatial and temporal distributions of probability classification of precipitation and temperature anomalies over China. J Appl Meteor Sci, 2011, 22(5): 513-524. http://qikan.camscma.cn/article/id/20110501
|
[18] |
Lin S, Li H Y, Huang P C, et al. Characteristics of high temperature, drought and circulation situation in summer 2022 in China. J Arid Meteor, 2022, 40(5): 748-763.
|
[19] |
Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503
|
[20] |
Su Z J, Zheng G G, Feng D X. The review of hygroscopic seeding. Plateau Meteor, 2009, 28(1): 227-232.
|
[21] |
Wang W M, Lu W, Huang P Q, et al. An experimental study on specific property of several catalytic agent applied in artificial warm cloud and fog dissipation. Sci Meteor Sinica, 2000, 20(4): 478-486.
|
[22] |
Xing F H, Huang F T, Li G W, et al. Physical effect analysis of warm cloud-seeding experiment for artificial precipitation enhancement in central mountain areas of Hainan Island. J Arid Meteor, 2023, 41(1): 114-122.
|
[23] |
Houghton H G, Radford W. On the Local Dissipation of Natural Fog. Cambridge and Woods Hole, 1938. DOI: 10.1575/1912/1094.
|
[24] |
Jin H, He H, Zhang Q, et al. Analyses of a microphysical response to the seeding in two artificial dissipation cases of fog. J Trop Meteor, 2012, 28(2): 228-236.
|
[25] |
Kunkel B A, Silverman B A. A comparison of the warm fog clearing capabilities of some hygroscopic materials. J Appl Meteor, 1970, 9(4): 634-638.
|
[26] |
Ye J D. Experimental study on artificial condensation nucleus. Acta Meteor Sinica, 1962, 20(3): 232-239.
|
[27] |
Li Y H, Huang T, Zhang X. Brief introduction of laboratory tests of several new warm cloud catalysts. Meteor Mon, 1982, 8(11): 35-37.
|
[28] |
Gao J Q, Wang G H, Guan L Y, et al. Experiment on the capability of a new warm fog dissipation agent in the laboratory. Arid Meteor, 2008, 26(2): 67-73.
|
[29] |
Dang J, Su Z J, Fang W, et al. Laboratory study of several powder-type hygroscopic catalysts. Meteor Sci Technol, 2017, 45(2): 398-404.
|
[30] |
Jiusto J E, Pilié R J, Kocmond W C. Fog modification with giant hygroscopic nuclei. J Appl Meteor, 1968, 7(5): 860-869.
|
[31] |
Yao Z Y. Review of weather modification research in Chinese Academy of Meteorological Sciences. J Appl Meteor Sci, 2006, 17(6): 786-795. http://qikan.camscma.cn/article/id/200606127
|
[32] |
Zhang J H, Sun H Y, Qu J H, et al. Test research on the water absorption properties of new warm cloud seeding catalyst. J Arid Meteor, 2019, 37(1): 153-158.
|
[33] |
Li B, Chen K, Yang J, et al. Statistical analysis of the effect of wintertime air quality improvement using weather modification technology in Shihezi. Acta Sci Circumstantiae, 2021, 41(11): 4396-4405.
|
[34] |
Wu Y, Wang B W, Jia Q Z, et al. Study on Water Evaporation Retardants with Abilities of Anti-environmental Interference//2009 International Conference on Environmental Science and Information Application Technology. IEEE, 2009: 183-185.
|
[35] |
Bermeo M, Hadri N E, Ravaux F, et al. Adsorption capacities of hygroscopic materials based on NaCl-TiO2 and NaCl-SiO2 core/shell particles. J Nanotechnol, 2020. DOI: 10.1155/2020/3683629.
|
[36] |
Tai Y L, Liang H R, Zaki A, et al. Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application. ACS Nano, 2017, 11(12): 12318-12325.
|
[37] |
Fang C G, Guo X L. The microphysical structure of a heavy fog event in North China. J Appl Meteor Sci, 2019, 30(6): 700-709. doi: 10.11898/1001-7313.20190606
|
[38] |
Liu D Y, Pu M J, Yang J, et al. Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006. Acta Meteor Sinica, 2009, 67(1): 147-157.
|