Citation: | Wang Zhenhua, Luo Jiali, Zhang Jiankai, et al. Interannual variation of tropospheric ozone over the Tibetan Plateau in summer and its influencing factors. J Appl Meteor Sci, 2024, 35(6): 725-736. DOI: 10.11898/1001-7313.20240608. |
Fig. 2 Summer total amount of tropospheric ozone column (the shaded) over the Plateau and its surrounding areas
(the dotted denotes difference in total amount of tropospheric ozone column passing the test of 0.01 level, and the gray thin line denotes the Plateau boundary and coastline, similarly hereinafter)
[1] |
Chen C, Tian W S, Tian H Y, et al. Vertical distribution of ozone and stratosphere-troposphere exchanges on the northeastern side of Tibetan Plateau. Plateau Meteor, 2012, 31(2): 295-303.
|
[2] |
Zhu B, Hou X W, Kang H Q. Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau. J Geophys Res Atmos, 2016, 121(4): 2029-2042. doi: 10.1002/2015JD023857
|
[3] |
Monks P S, Archibald A T, Colette A, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos Chem Phys, 2015, 15(15): 8889-8973. doi: 10.5194/acp-15-8889-2015
|
[4] |
Xu X B. Observational study advances of haze and photochemical pollution in China. J Appl Meteor Sci, 2016, 27(5): 604-619. doi: 10.11898/1001-7313.20160509
|
[5] |
Wang Z S, Li Y T, Chen T, et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing. China Environ Sci, 2014, 34(12): 3001-3008.
|
[6] |
Zhou L H, Zhang J, Zheng X H, et al. Impacts of chemical and synoptic processes on summer tropospheric ozone trend in North China. Adv Meteor, 2019, 2019. DOI: 10.1155/2019/3148432.
|
[7] |
Intergovernmental Panel on Climate Change(IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture. Forestry and Other Land Use, 2019.
|
[8] |
Young P J, Naik V, Fiore A M, et al. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elem Sci Anth, 2018, 610. DOI: 10.1525/elementa.265.
|
[9] |
Lu X, Zhang L, Wang X L, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ Sci Technol Lett, 2020, 7(4): 240-247. doi: 10.1021/acs.estlett.0c00171
|
[10] |
Sicard P. Ground-level ozone over time: An observation-based global overview. Curr Opin Environ Sci Health, 2021, 19. DOI: 10.1016/j.coesh.2020.100226.
|
[11] |
Xie B, Zhang H. Main progresses in the research on ozone. Sci Technol Eng, 2014, 14(8): 106-114.
|
[12] |
Gaudel A, Cooper O R, Ancellet G, et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem Sci Anth, 2018, 6. DOI: 10.1525/elemental.291.
|
[13] |
Leventidou E, Weber M, Eichmann K U, et al. Harmonisation and trends of 20-year tropical tropospheric ozone data. Atmos Chem Phys, 2018, 18(13): 9189-9205. doi: 10.5194/acp-18-9189-2018
|
[14] |
Wang H L, Lu X, Jacob D J, et al. Global tropospheric ozone trends, attributions, and radiative impacts in 1995-2017: An integrated analysis using aircraft(IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. Atmos Chem Phys, 2022, 22(20): 13753-13782. doi: 10.5194/acp-22-13753-2022
|
[15] |
Vigouroux C, De Mazière M, Demoulin P, et al. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations. Atmos Chem Phys, 2008, 8(23): 6865-6886. doi: 10.5194/acp-8-6865-2008
|
[16] |
Cui J, Pandey Deolal S, Sprenger M, et al. Free tropospheric ozone changes over Europe as observed at jungfraujoch(1990-2008): An analysis based on backward trajectories. J Geophys Res, 2011, 116(D10). DOI: 10.1029/2010JD015154.
|
[17] |
Ziemke J R, Chandra S, Bhartia P K. A 25-year data record of atmospheric ozone in the Pacific from total ozone mapping spectrometer(TOMS) cloud slicing: Implications for ozone trends in the stratosphere and troposphere. J Geophys Res, 2005, 110(D15). DOI: 10.1029/2004JD005687.
|
[18] |
Xu X B, Lin W L. 1979-2005 trends of tropospheric ozone over China based on the satellite data. Climate Change Res, 2010, 6(2): 100-105.
|
[19] |
Dufour G, Eremenko M, Beekmann M, et al. Lower tropospheric ozone over the North China Plain: Variability and trends revealed by IASI satellite observations for 2008-2016. Atmos Chem Phys, 2018, 18(22): 16439-16459. doi: 10.5194/acp-18-16439-2018
|
[20] |
Zhou X J, Luo C, Li W L, et al. Total ozone change in China area and low-value center of Qinghai-Tibet Plateau. Chinese Sci Bull, 1995, 40(15): 1396-1398.
|
[21] |
Tian W S, Chipperfield M, Huang Q. Effects of the Tibetan Plateau on total column ozone distribution. Tellus B Chem Phys Meteor, 2008, 60(4): 622-635. doi: 10.1111/j.1600-0889.2008.00338.x
|
[22] |
Bian J C, Yan R C, Chen H B, et al. Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations. Adv Atmos Sci, 2011, 28(6): 1318-1325. doi: 10.1007/s00376-011-0174-9
|
[23] |
Guo D, Su Y C, Shi C H, et al. Double core of ozone valley over the Tibetan Plateau and its possible mechanisms. J Atmos Sol Terr Phys, 2015, 130/131: 127-131.
|
[24] |
Xiao Z Y, Jiang H. Variation of total ozone over Tibetain Plateau during 30 years monitored by remotely sensed data. Environ Sci, 2010, 31(11): 2569-2574.
|
[25] |
Yin H, Sun Y W, Notholt J, et al. Quantifying the drivers of surface ozone anomalies in the urban areas over the Qinghai-Tibet Plateau. Atmos Chem Phys, 2022, 22(21): 14401-14419.
|
[26] |
Luo J L, Liang W J, Xu P P, et al. Seasonal features and a case study of tropopause folds over the Tibetan Plateau. Adv Meteor, 2019. DOI: 10.1155/2019/4375123.
|
[27] |
Yin X F, Rupakheti D, Zhang G S, et al. Surface ozone over the Tibetan Plateau controlled by stratospheric intrusion. Atmos Chem Phys, 2023, 23(17): 10137-10143.
|
[28] |
Yang S Y, Zhou S W, Zhang R H, et al. Coupling relationship between tropopause height and total ozone as well as ascending motion over the Tibetan Plateau. Trans Atmos Sci, 2012, 35(4): 438-447.
|
[29] |
Jiang Z J, Li J, Lu X, et al. Impact of Western Pacific subtropical high on ozone pollution over Eastern China. Atmos Chem Phys, 2021, 21(4): 2601-2613.
|
[30] |
Kong Q X, Wang G C, Liu G R, et al. Electrochemical measurement of vertical distribution of atmospheric ozone. Chinese J Atmos Sci, 1992, 16(5): 636-640.
|
[31] |
Sprenger M, Wernli H. A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period(1979-1993). J Geophys Res, 2003, 108(D12). DOI: 10.1029/2002JD002636.
|
[32] |
Xu X R, Tian H Y, Tian W S, et al. The spatiotemporal patterns of the upper-tropospheric water vapor over the Tibetan Plateau in summer based on EOF analysis. J Climate, 2022, 35(15): 5033-5051.
|
[33] |
Chen J Q, Shi X H. Possible effects of the difference in atmospheric heating between the Tibetan Plateau and the Bay of Bengal on spatiotemporal evolution of rainstorms. J Appl Meteor Sci, 2022, 33(2): 244-256. doi: 10.11898/1001-7313.20220210
|
[34] |
Song Y L, Zhou G S, Guo J P, et al. Influences of global warming on yield structure and quality of winter wheat Xumai 33. J Appl Meteor Sci, 2023, 34(5): 552-561. doi: 10.11898/1001-7313.20230504
|
[35] |
Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509
|
[36] |
Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607
|
[37] |
Zhou M Z, Xu J. Covariation relationship between tropical cyclone intensity and size change over the Northwest Pacific. J Appl Meteor Sci, 2023, 34(4): 463-474. doi: 10.11898/1001-7313.20230407
|
[38] |
Zheng X D, Wei X L. Long-term total ozone comparisons between space-based and ground-based observations at 4 sites in China. J Appl Meteor Sci, 2010, 21(1): 1-10. http://qikan.camscma.cn/article/id/20100101
|
[39] |
Xian T, Homeyer C R. Global tropopause altitudes in radiosondes and reanalyses. Atmos Chem Phys, 2019, 19(8): 5661-5678.
|
[40] |
Liang T, Luo J L, Zhang C Y, et al. The impact of tropopause fold event on surface ozone concentration over Tibetan Plateau in July. Atmos Res, 2024, 298. DOI: 10.1016/j.atmosres.2023.107156.
|
[41] |
Akritidis D, Pozzer A, Zanis P. On the impact of future climate change on tropopause folds and tropospheric ozone. Atmos Chem Phys, 2019, 19(22): 14387-14401.
|
[42] |
Lin Y F, Tian W S, Xue H Y, et al. Global trends of tropopause folds in recent decades. Atmos Ocean Sci Lett, 2024, 17(3). DOI: 10.1016/j.aosl.2023.100450.
|
[43] |
Zhang Y P, Huang Q, Guo K, et al. Tropopause folds over the Tibetan Plateau and their impact on water vapor in the upper troposphere-lower stratosphere. Climate Dyn, 2024, 62(2): 1423-1437.
|
[44] |
Manney G L, Hegglin M I, Daffer W H, et al. Jet characterization in the upper troposphere/lower stratosphere(UTLS): Applications to climatology and transport studies. Atmos Chem Phys, 2011, 11(12): 6115-6137.
|
[45] |
Li Y, Zhao C S, Fang Y Y, et al. Analysis of distribution and seasonal change of tropospheric ozone residual in recent 20 years using satellite data. J Appl Meteor Sci, 2007, 18(2): 181-186. http://qikan.camscma.cn/article/id/20070231
|
[46] |
Liu N W, Ma J Z. Seasonal relationships between tropospheric ozone and its precursors over East Asia. J Appl Meteor Sci, 2017, 28(4): 427-435. doi: 10.11898/1001-7313.20170404
|