聚类 | 轨迹数量 | 轨迹数量占比/% | 平均质量浓度/(μg·m-3) |
1 | 121 | 17.0 | 211.3 |
2 | 175 | 24.6 | 190.8 |
3 | 292 | 41.1 | 157.8 |
4 | 103 | 14.5 | 99.0 |
5 | 20 | 2.8 | 16.5 |
Citation: | Geng Xinze, Liu Chang, Liu Xuyan, et al. Formation mechanism of heavy PM2.5 pollution in Harbin in January 2020. J Appl Meteor Sci, 2024, 35(6): 737-746. DOI: 10.11898/1001-7313.20240609. |
Table 1 Five types of airmass trajectories affecting Harbin in Jan 2020
聚类 | 轨迹数量 | 轨迹数量占比/% | 平均质量浓度/(μg·m-3) |
1 | 121 | 17.0 | 211.3 |
2 | 175 | 24.6 | 190.8 |
3 | 292 | 41.1 | 157.8 |
4 | 103 | 14.5 | 99.0 |
5 | 20 | 2.8 | 16.5 |
[1] |
Pant P, Guttikunda S K, Peltier R E. Exposure to particulate matter in India: A synthesis of findings and future directions. Environ Res, 2016, 147: 480-496. doi: 10.1016/j.envres.2016.03.011
|
[2] |
Huang X, Ding A J, Wang Z L, et al. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China. Nat Geosci, 2020, 13: 428-434. doi: 10.1038/s41561-020-0583-4
|
[3] |
Xu X B. Observational study advances of haze and photochemical pollution in China. J Appl Meteor Sci, 2016, 27(5): 604-619. doi: 10.11898/1001-7313.20160509
|
[4] |
Health Effects Institute. State of Global Air 2020. Special Report. Boston: Health Effects Institute, 2020.
|
[5] |
Zhang Q, Zheng Y X, Tong D, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. PNAS, 2019, 116(49): 24463-24469. doi: 10.1073/pnas.1907956116
|
[6] |
Chen W W, Liu Y, Wu X W, et al. Spatial and temporal characteristics of air quality and cause analysis of heavy pollution in Northeast China. Environ Sci, 2019, 40(11): 4810-4823.
|
[7] |
Wang P, Liu D C, Mukherjee A, et al. Air pollution governance in China and India: Comparison and implications. Environ Sci Policy, 2023, 142: 112-120. doi: 10.1016/j.envsci.2023.02.006
|
[8] |
Xi L Z, Ba L, Pang Z Y, et al. Aerosol characteristics of dust weather on north slope of the Qilian Mountains. J Appl Meteor Sci, 2024, 35(3): 311-322. doi: 10.11898/1001-7313.20240305
|
[9] |
Wu X T, Wang X Y, Zheng D, et al. Effects of different aerosols on cloud-to-ground lightning activity in the Yangtze River Delta. J Appl Meteor Sci, 2023, 34(5): 608-618. doi: 10.11898/1001-7313.20230509
|
[10] |
Feng Y Y, Ning M, Lei Y, et al. Defending blue sky in China: Effectiveness of the "Air Pollution Prevention and Control Action Plan" on air quality improvements from 2013 to 2017. J Environ Manag, 2019, 252. DOI: 10.1016/j.jenvman.2019.109603.
|
[11] |
Zhou B X, Zhu L F, Wu H, et al. Accuracy of atmospheric profiles retrieved from microwave radiometer and its application to precipitation forecast. J Appl Meteor Sci, 2023, 34(6): 717-728. doi: 10.11898/1001-7313.20230607
|
[12] |
Chyi D, He L F. Stage characteristics and mechanisms of extreme high temperature in China in summer of 2022. J Appl Meteor Sci, 2023, 34(4): 385-399. doi: 10.11898/1001-7313.20230401
|
[13] |
Wang M M, Ding M H, Lü J M, et al. Climatology of winter cold waves and associated atmospheric circulation anomalies in China during the last 40 years. J Appl Meteor Sci, 2024, 35(3): 298-310. doi: 10.11898/1001-7313.20240304
|
[14] |
Cheng Y, Yu Q Q, Liu J M, et al. Strong biomass burning contribution to ambient aerosol during heating season in a megacity in Northeast China: Effectiveness of agricultural fire bans?. Sci Total Environ, 2021, 754. DOI: 10.1016/j.scitotenv.2020.142144.
|
[15] |
Zhang M M, Zhao C Y, Fang Y H, et al. Assessment and prediction of climate change in Northeast China based on new climate state background. J Meteor Environ, 2023, 39(4): 95-102.
|
[16] |
Fu D L, Shi X F, Xing Y F, et al. Contributions of extremely unfavorable meteorology and coal-heating boiler control to air quality in December 2019 over Harbin, China. Atmos Pollut Res, 2021, 12(11). DOI: 10.1016/j.apr.2021.101217.
|
[17] |
Li W, Zhao H J, Wang C S, et al. Variation characteristics of aerosol optical depth in Northeast China from 2003 to 2022. J Appl Meteor Sci, 2024, 35(2): 211-224. doi: 10.11898/1001-7313.20240207
|
[18] |
Li B, Shi X F, Liu Y P, et al. Long-term characteristics of criteria air pollutants in megacities of Harbin-Changchun megalopolis, Northeast China: Spatiotemporal variations, source analysis, and meteorological effects. Environ Pollut, 2020, 267. DOI: 10.1016/j.envpol.2020.115441.
|
[19] |
Ke H B, Gong S L, He J J, et al. Assessment of open biomass burning impacts on surface PM2.5 concentration. J Appl Meteor Sci, 2020, 31(1): 105-116. doi: 10.11898/1001-7313.20200110
|
[20] |
Ma Y J, Zhao H J, Liu Y F, et al. Analysis of aerosol concentration variation and weather characteristics of heavy pollution events in Northeast China. J Meteor Environ, 2021, 37(5): 13-19.
|
[21] |
Liang L L, Sun J Y, Zhang Y M, et al. Comparison of chemical components characteristics of PM2.5 between haze and clean periods during summertime in Lin'an. Environ Sci, 2018, 39(7): 3042-3050.
|
[22] |
Cheng Y, Cao X B, Yu Q Q, et al. Synergy of multiple drivers leading to severe winter haze pollution in a megacity in Northeast China. Atmos Res, 2022, 270. DOI: 10.1016/j.atmosres.2022.106075.
|
[23] |
Sun X Z, Wang K, Li B, et al. Exploring the cause of PM2.5 pollution episodes in a cold metropolis in China. J Clean Prod, 2020, 256. DOI: 10.1016/j.jclepro.2020.120275.
|
[24] |
Yan P, Huan N, Zhang Y M, et al. Size resolved aerosol OC, EC at a regional background station in the suburb of Beijing. J Appl Meteor Sci, 2012, 23(3): 285-293. http://qikan.camscma.cn/article/id/20120304
|
[25] |
Guo A H, Wang C Z, Deng H H, et al. Atmospheric dynamics analysis and simulation of the migration of fall armyworm. J Appl Meteor Sci, 2022, 33(5): 541-554. doi: 10.11898/1001-7313.20220503
|
[26] |
Ma G, Huang J, Gong X Y, et al. Review of pre-processing techniques for meteorological satellite data assimilation in numerical prediction. J Appl Meteor Sci, 2024, 35(2): 142-155. doi: 10.11898/1001-7313.20240202
|
[27] |
Wang R, Ding J L, Ma W, et al. Analysis of atmospheric particulates source in Urumqi based on PSCF and CWT models. Acta Sci Circumstantiae, 2021, 41(8): 3033-3042.
|
[28] |
Wang Y Q, Zhang X Y, Draxler R R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw, 2009, 24(8): 938-939.
|
[29] |
Polissar A V, Hopke P K, Harris J M. Source regions for atmospheric aerosol measured at Barrow, Alaska. Environ Sci Technol, 2001, 35(21): 4214-4226.
|
[30] |
Pan W, Zuo Z Y, Xiao D, et al. Interdecadal variation of haze days over China with atmospheric causes in recent 50 years. J Appl Meteor Sci, 2017, 28(3): 257-269. doi: 10.11898/1001-7313.20170301
|
[31] |
Li R J, Huang M Y, Ding D P, et al. Warm cloud size distribution experiment based on 70 m3 expansion cloud chamber. J Appl Meteor Sci, 2023, 34(5): 540-551. doi: 10.11898/1001-7313.20230503
|
[32] |
Zheng B, Zhang Q, Zhang Y, et al. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos Chem Phys, 2015, 15(4): 2031-2049.
|
[33] |
Wang G H, Zhang R Y, Gomez M E, et al. Persistent sulfate formation from London Fog to Chinese haze. PNAS, 2016, 113(48): 13630-13635.
|
[34] |
Zhou B T, Shen H Z, Huang Y, et al. Daily variations of size-segregated ambient particulate matter in Beijing. Environ Pollut, 2015, 197: 36-42.
|
[35] |
Zhong J T, Zhang X Y, Wang Y Q, et al. Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J Meteor Res, 2017, 31(5): 809-819.
|
[36] |
Wang Y, Zhuang G S, Sun Y L, et al. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos Environ, 2006, 40(34): 6579-6591.
|
[37] |
Li W G, Duan F K, Zhao Q, et al. Investigating the effect of sources and meteorological conditions on wintertime haze formation in Northeast China: A case study in Harbin. Sci Total Environ, 2021, 801. DOI: 10.1016/j.scitotenv.2021.149631.
|
[38] |
Lim H J, Turpin B J. Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta Supersite Experiment. Environ Sci Technol, 2002, 36(21): 4489-4496.
|
[39] |
Yang G Y, Zhao H M, Tong D Q, et al. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the northeastern China. Sci Total Environ, 2020, 716. DOI: 10.1016/j.scitotenv.2020.136517.
|
[40] |
Yin S, Wang X F, Zhang X R, et al. Exploring the effects of crop residue burning on local haze pollution in Northeast China using ground and satellite data. Atmos Environ, 2019, 199: 189-201.
|
[41] |
Zhao M Y, Cheng R X, Zhang C Y, et al. Photochemistry of levoglucosan in atmospheric aerosols: A review. Environ Chem, 2022, 41(6): 2044-2051.
|
[42] |
Liang L L, Engling G, Cheng Y, et al. Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study. Atmos Res, 2020, 231. DOI: 10.1016/j.atmosres.2019.104660.
|
[43] |
Liang L L, Du Z Y, Engling G, et al. Improved biomass burning pollution in Beijing from 2011 to 2018. Atmos Environ, 2023, 310. DOI: 10.1016/j.atmosenv.2023.119969.
|