发育期 | To/℃ | Tb/℃ | Tm/℃ |
苗期 | 25 | 10 | 30 |
花期 | 25 | 15 | 30 |
结果期 | 25 | 15 | 35 |
采收期 | 25 | 15 | 35 |
Citation: | Zhu Yuqing, Xue Xiaoping. Comparison and evaluation of tomato growth models based on different drivers. J Appl Meteor Sci, 2024, 35(6): 747-758. DOI: 10.11898/1001-7313.20240610. |
Table 1 Temperature of three basis points in each growth period of tomato (from Reference [25])
发育期 | To/℃ | Tb/℃ | Tm/℃ |
苗期 | 25 | 10 | 30 |
花期 | 25 | 15 | 30 |
结果期 | 25 | 15 | 35 |
采收期 | 25 | 15 | 35 |
Table 2 Logistic model of tomato growth index and radial heat accumulation,accumulated temperature and suitability
生长指标 | 模拟方法 | Logistics模型 | 决定系数 |
辐热积 | 开花数 | y=5.238/(1+3.979e-0.058x) | 0.994 |
坐果数 | y=5.028/(1+2.995e-0.054x) | 0.994 | |
横茎长度 | y=87.782/(1+1.888e-0.016x) | 0.996 | |
纵茎长度 | y=60.573/(1+1.477e-0.016x) | 0.995 | |
有效积温 | 开花数 | y=5.783/(1+4.211e-0.091x) | 0.993 |
坐果数 | y=5.016/(1+3.679e-0.209x) | 0.969 | |
横茎长度 | y=104.339/(1+1.777e-0.037x) | 0.976 | |
纵茎长度 | y=53.678/(1+1.299e-0.054x) | 0.987 | |
适宜度 | 开花数 | y=5.390/(1+3.583e-0.477x) | 0.996 |
坐果数 | y=5.013/(1+3.663e-0.697x) | 0.984 | |
横茎长度 | y=101.012/(1+1.887e-0.149x) | 0.988 | |
纵茎长度 | y=55.098/(1+1.447e-0.197x) | 0.996 |
Table 3 Statistics of validation results for tomato growth indicators using different arguments
生长指标 | 模型 | 均方根误差 | 相对均方根误差 | 测定系数 |
开花数 | 辐热积 | 0.780 | 0.235 | 1.829 |
有效积温 | 0.175 | 0.053 | 1.027 | |
适宜度 | 0.749 | 0.225 | 1.743 | |
坐果数 | 辐热积 | 0.208 | 0.061 | 1.229 |
有效积温 | 0.474 | 0.138 | 1.482 | |
适宜度 | 0.192 | 0.056 | 1.117 | |
横茎长度 | 辐热积 | 2.743 mm | 0.056 | 0.850 |
有效积温 | 17.525 mm | 0.357 | 1.520 | |
适宜度 | 9.460 mm | 0.193 | 1.262 | |
纵茎长度 | 辐热积 | 0.991 mm | 0.027 | 0.898 |
有效积温 | 8.428 mm | 0.230 | 1.713 | |
适宜度 | 4.310 mm | 0.118 | 1.213 |
[1] |
Guo S R, Sun J, Shu S, et al. Analysis of general situation, characteristics, existing problems and development trend of protected horticulture in China. China Veg, 2012(18): 1-14.
|
[2] |
Han J, Shi X, Qin J P, et al. Cultivation techniques of protected tomato and control of common diseases. Agric Eng Technol, 2023, 43(3): 73-74.
|
[3] |
Zheng Y J, Yang Z Q, Wang L, et al. Refined risk zoning of high temperature and heat damage to greenhouse tomato in Southern China. J Appl Meteor Sci, 2021, 32(4): 432-442. doi: 10.11898/1001-7313.20210405
|
[4] |
Zhu Y Q, Xue X P. Effects of shading and light restoration on photosynthetic characteristics of tomato leaves during flowering and fruit period. Chinese J Agrometeor, 2019, 40(2): 126-134. doi: 10.3969/j.issn.1000-6362.2019.02.007
|
[5] |
Zhang S J, Yang Z Q, Chen Y Q, et al. Effects of low temperature, weak light and high humidity stresses on the physiological and biochemical indicators of greenhouse tomato during flowering period. Chinese J Ecol, 2014, 33(11): 2995-3001.
|
[6] |
Yang S Q, Yang Z Q, Wang L, et al. Effect of high humidity and high temperature interaction on photosynthetic characteristics of greenhouse tomato crops. Chinese J Ecol, 2018, 37(1): 57-63.
|
[7] |
Zhu L Y. Effects of Low Temperature and Low Light at Flowering Stage on Yield and Fruit Quality of Greenhouse Tomato. Nanjing: Nanjing University of Information Science & Technology, 2018.
|
[8] |
Sinnathamby S, Douglas-Mankin K R, Craige C. Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agric Water Manag, 2017, 180: 61-69. doi: 10.1016/j.agwat.2016.10.024
|
[9] |
Paredes P, Torres M O. Parameterization of AquaCrop model for vining pea biomass and yield predictions and assessing impacts of irrigation strategies considering various sowing dates. Irrig Sci, 2017, 35(1): 27-41. doi: 10.1007/s00271-016-0520-x
|
[10] |
Ma Y P, Wang P J, Wang D, et al. Reconstruction of crop development model with its simulation test based on sugarcane. J Appl Meteor Sci, 2021, 32(5): 603-617. doi: 10.11898/1001-7313.20210508
|
[11] |
Chen Y. Quantitative Study on Effective Accumulated Temperature and Growth and Development of Summer Maize and Accumulation of Nitrogen, Phosphorus and Potassium. Beijing: Chinese Academy of Agricultural Sciences, 2021.
|
[12] |
Pearl R. The growth of populations. Quart Rev Biol, 1927, 2(4): 532-548. doi: 10.1086/394288
|
[13] |
Tsoularis A, Wallace J. Analysis of logistic growth models. Math Biosci, 2002, 179(1): 21-55. doi: 10.1016/S0025-5564(02)00096-2
|
[14] |
Reed H S, Holland R H. The growth rate of an annual plant helianthus. PNAS, 1919, 5(4): 135-144. doi: 10.1073/pnas.5.4.135
|
[15] |
West G B, Brown J H, Enquist B J. A general model for ontogenetic growth. Nature, 2001, 413(6856): 628-631. doi: 10.1038/35098076
|
[16] |
Mahbod M, Sepaskhah A R, Zand-Parsa S. Estimation of yield and dry matter of winter wheat using logistic model under different irrigation water regimes and nitrogen application rates. Arch Agron Soil Sci, 2014, 60(12): 1661-1676. doi: 10.1080/03650340.2014.917169
|
[17] |
Shi P J, Men X Y, Sandhu H S, et al. The "general" ontogenetic growth model is inapplicable to crop growth. Ecol Model, 2013, 266: 1-9. doi: 10.1016/j.ecolmodel.2013.06.025
|
[18] |
Yu Q, Liu J D, Zhang Y Q, et al. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors. Int J Biometeor, 2002, 46(4): 185-191. doi: 10.1007/s00484-002-0141-3
|
[19] |
Mirschel W, Schultz A, Wenkel K O, et al. Crop growth modelling on different spatial scales—A wide spectrum of approaches. Arch Agron Soil Sci, 2004, 50(3): 329-343. doi: 10.1080/03650340310001634353
|
[20] |
Fang S L, Kuo Y H, Kang L, et al. Using sigmoid growth models to simulate greenhouse tomato growth and development. Horticulturae, 2022, 8(11). DOI: 10.3390/horticulturae8111021.
|
[21] |
He C, Zhang Z. Modeling the relationship between tomato fruit growth and the effective accumulated temperature in solar greenhouse. Acta Hortic, 2006(718): 581-588.
|
[22] |
Li M X, Huo Z G, Kong R, et al. Indicator construction of spring low-temperature disaster affecting winter wheat of Huang-Huai-Hai based on meta-analysis. J Appl Meteor Sci, 2024, 35(1): 45-56. doi: 10.11898/1001-7313.20240104
|
[23] |
Su L J, Liu Y H, Wang Q J. Rice growth model in China based on growing degree days. Trans Chinese Soc Agric Eng, 2020, 36(1): 162-174.
|
[24] |
Shi N, Gao Z Q, Chen C Y, et al. Simulation and analysis of above-ground dry matter and leaf area index of rice based on Logistic model. J Northeast Agric Univ, 2022, 53(3): 10-18.
|
[25] |
Ni J H, Luo W H, Li Y X, et al. Simulation of the development of tomato in greenhouse. Sci Agric Sinica, 2005, 38(6): 1219-1225. doi: 10.3321/j.issn:0578-1752.2005.06.022
|
[26] |
Ni J H, Luo W H, Li Y X, et al. Simulation of greenhouse tomato dry matter partitioning and yield prediction. Chinese J Appl Ecol, 2006, 17(5): 811-816. doi: 10.3321/j.issn:1001-9332.2006.05.011
|
[27] |
Ming C H, Jiang F L, Wang G L, et al. Simulation model of cucumber healthy indexes based on radiation and thermal effectiveness. Trans Chinese Soc Agric Eng, 2012, 28(9): 109-113.
|
[28] |
Shi X H, Cai H J, Zhao L L, et al. Greenhouse tomato dry matter production and distribution model under condition of irrigation based on product of thermal effectiveness and photosynthesis active radiation. Trans Chinese Soc Agric Eng, 2016, 32(3): 69-77.
|
[29] |
Li Y X, Luo W H, Ni J H, et al. Simulation of greenhouse cucumber leaf area based on radiation and thermal effectiveness. J Plant Ecol, 2006, 30(5): 861-867.
|
[30] |
Marcelis LFM, Gijzen H. A model for prediction of yield and quality of cucumber fruits. Acta Horticulturae, 1998, 476: 237-242.
|
[31] |
Holzkämper A, Calanca P, Fuhrer J. Identifying climatic limitations to grain maize yield potentials using a suitability evaluation approach. Agric For Meteor, 2013, 168: 149-159.
|
[32] |
Qiu M J, Song Y B, Wang J L, et al. Integrated technology of yield dynamic prediction of winter wheat in Shandong Province. J Appl Meteor Sci, 2016, 27(2): 191-200. doi: 10.11898/1001-7313.20160207
|
[33] |
Song Y L, Zhou G S, Guo J P, et al. Influence of different sowing dates on yield and quality of corn Xianyu 335. J Applied Meteor Sci, 2024, 35(5): 619-628. doi: 10.11898/1001-7313.20240509
|
[34] |
Wang T Y, Li M H, Wu Z C, et al. Evaluation model of yellow peach climatic quality rating in hilly mountainous areas. J Appl Meteor Sci, 2024, 35(4): 456-466. doi: 10.11898/1001-7313.20240406
|
[35] |
Sun G H, Duan J Q, Li J R, et al. Agro-climatic zoning of oiltea camellia in China based on climate-land integrated impacts. J Appl Meteor Sci, 2024, 35(4): 444-455. doi: 10.11898/1001-7313.20240405
|
[36] |
Wei R J, Wang X, Zhu H Q. Quantitative evaluation model for cucumber microclimate suitability-degree of solar greenhouse. Meteor Mon, 2015, 41(5): 630-638.
|
[37] |
Liu C, Li K W, Zhang J Q, et al. Refined climatic zoning for citrus cultivation in Southern China based on climate suitability. J Appl Meteor Sci, 2021, 32(4): 421-431. doi: 10.11898/1001-7313.20210404
|
[38] |
Li N, Xue X P. Improvement and application of micro-climate suitability quantitative evaluation model in heliogreenhouse. J Arid Meteor, 2020, 38(6): 1009-1015.
|
[39] |
Zhu Y Q, Xue X P. Effect of shading days on flowering and fruit setting characteristics of tomatoes at flowering and fruiting stages. J Arid Meteor, 2020, 38(5): 820-827.
|
[40] |
Zu L L. Study on Data-driven Tomato Fruit Growth Prediction Model in Solar Greenhouse. Taian: Shandong Agricultural University, 2023.
|
[41] |
Zhu Y Q, Xue X P. Effects of shading on growth and quality of tomato during flower and fruit period. J Arid Meteor, 2020, 38(6): 994-1000.
|
[42] |
Xue X P. Determination of Critical Nitrogen Concentration Dilution Model of Cotton and its Application. Nanjing: Nanjing Agricultural University, 2007.
|
[43] |
Hou Y Y, Zhang Y H, Wang L Y, et al. Climatic suitability model for spring maize in Northeast China. Chinese J Appl Ecol, 2013, 24(11): 3207-3212.
|
[44] |
Zhao F, Qian H S, Jiao S X. The climatic suitability model of crop: A case study of winter wheat in Henan Province. Resour Sci, 2003, 25(6): 77-82.
|
[45] |
Guo S B, Liu F H, Wang D, et al. Construction of a tomato growth rate simulation model based on climate suitability index. Chinese J Agrometeor, 2023, 44(7): 611-623.
|
[46] |
Wang L, Yang Z Q, Wang M T, et al. Effect of air humidity on nutrient content and dry matter distribution of tomato seedlings under high temperature. Chinese J Agrometeor, 2018, 39(5): 304-313.
|
[47] |
Wei T T, Yang Z Q, Wang M T, et al. Effects of high temperature and different air humidity on water physiology of flowering tomato seedlings. Chinese J Agrometeor, 2019, 40(5): 317-326.
|
[48] |
Bai H X. Study on Cucumber Growth Model in Solar Greenhouse Based on Different Moisture Conditions. Yinchuan: Ningxia University, 2021.
|
[49] |
Zhang Z C, Zhou F, Zhang H X, et al. Predication of typical winter circulation systems based on BCC_CSM1.1m model. J Appl Meteor Sci, 2023, 34(1): 27-38. doi: 10.11898/1001-7313.20230103
|
[50] |
Verstraeten W W, Veroustraete F, Feyen J. On temperature and water limitation of net ecosystem productivity: Implementation in the C-fix model. Ecol Model, 2006, 199(1): 4-22.
|
[51] |
Mi N, Chen P S, Zhang Y S, et al. A comparative study on estimation models for field evapotranspiration. Resour Sci, 2009, 31(9): 1599-1606.
|
[52] |
Song J, Zhang S B, Wang X T, et al. Variations in both FTL1 and SP5G, two tomato FT paralogs, control day-neutral flowering. Mol Plant, 2020, 13(7): 939-942.
|
[53] |
Ni J H, Chen X H, Chen C H, et al. Simulation of cucumber fruit growth in greenhouse based on production of thermal effectiveness and photosynthesis active radiation. Trans Chinese Soc Agric Eng, 2009, 25(5): 192-196.
|
[54] |
Zhu L Y, Yang Z Q, Li J, et al. Effect of low temperature and weak light at flowering stage on flower-fruit characteristics of tomato. Chinese J Agrometeor, 2017, 38(7): 456-465.
|
[55] |
Zhao H L. Effects of High Temperature and Humidity on Fruit Growth and Sugar and Nitrogen Metabolism of Greenhouse Tomato. Nanjing: Nanjing University of Information Science & Technology, 2020.
|
[56] |
Jiang X D, Zhang J Q, Lei H. Effect of regulated deficit irrigation on greenhouse tomato production under high temperature and high humidity environment in Meiyu season. Chinese J Agrometeor, 2023, 44(8): 685-694.
|