Chen Dehui, Yang Xuesheng, Zhang Hongliang, et al. Strategy for designing a non-hydrostatic multi-scale community model dynamic core. J Appl Meteor Sci, 2003, 14(4): 452-461.
Citation: Chen Dehui, Yang Xuesheng, Zhang Hongliang, et al. Strategy for designing a non-hydrostatic multi-scale community model dynamic core. J Appl Meteor Sci, 2003, 14(4): 452-461.

STRATEGY FOR DESIGNING A NON-HYDROSTATIC MULTI-SCALE COMMUNITY MODEL DYNAMIC CORE

  • Received Date: 2002-09-02
  • Rev Recd Date: 2003-03-19
  • Publish Date: 2003-08-31
  • The strategy for designing a non-hydrostatic multi-scale community model dynamic core is proposed, based on the advances of the numerical weather prediction model and new techniques of radar and satellite observations, etc. There are two approaches in developing community models at present: one is that both global and regional models share a common temporal, spatial discretization approach and codes; the other is to use a single global variable resolution model that can be reconfigured according to applications. Attention is then focused on various desing issues, including the strategy for designing community models, the choice of model equations, the construction of model grid properties, the temporal and spatial discretization, the selection of the vertical coordinate, etc.
  • [1]
    Staniforth A, White A, Wood N, et al. Unified model documentation paper, No. 15, UKMO, 2002, personal communication.
    [2]
    Cote J, Gravel S, Methot A, et al. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 1998a, 126: 1373-1395. doi:  10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO; 2
    [3]
    Cote J, Gravel S, Methot A, et al. The operational CMC-MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Wea. Rev., 1998b, 126: 1397-1418. doi:  10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2
    [4]
    Cullen M J P. The unified forecast/climate model. Meteor. Mag., 1993, 122: 81-94.
    [5]
    Bubnova R, Gello G, Bernard P, et al. Integration of the fully elastic equations cast in hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/ALADIN NWP system. Mon. Wea. Rev., 1995, 123: 515-535. doi:  10.1175/1520-0493(1995)123<0515:IOTFEE>2.0.CO;2
    [6]
    Fox-Rabinwitz M, Stenchikov G, Suarez M, et al. A finite-difference GCM dynamic core with a variable resolution stretched grid. Mon. Wea. Rev., 1997, 125: 2943-2968. doi:  10.1175/1520-0493(1997)125<2943:AFDGDC>2.0.CO;2
    [7]
    Krinner G, Genthon C, Li Z-X, et al. Studies of the Antarctic climate with a stretched grid generation circulation model. J. Geophys. Res., 1997, 102: 13, 731-13, 745. doi:  10.1029/96JD03356
    [8]
    Courtier P, Geleyn J F. A global numerical weather prediction model with variable resolution: Application to the shallow water equations. Quart. J. Roy. Meteor. Soc., 1998b, 114: 1321-1346.
    [9]
    Hardiker V. A global numerical weather prediction model with variable resolution. Mon. Wea. Rev., 1997, 125: 59-73. doi:  10.1175/1520-0493(1997)125<0059:AGNWPM>2.0.CO;2
    [10]
    Schmidt F. Variable fine mesh in the spectral global models. Beitr. Phys. Atmos., 1977, 50: 211-217.
    [11]
    Caian M, Geleyn J F. Some limits to the variable mesh solution and comparison with the nested LAM one, Quart. J. Roy. Met. Soc., 1997, 123: 743-766. doi:  10.1002/(ISSN)1477-870X
    [12]
    Sharma O P, Upadhyaya H, Braine-Bonnaire T H, et al. Experiments on regional forecasting using a stretched coordinate general circulation model. In: Short and Medium Range NWP, Proc. WMO/IUGG NWP Symposium, 1987, Tokyo, Japan, Met. Soc.Japan, 263-271.
    [13]
    Paegle J. A variable resolution global model based upon Fourier and finite element representation. Mon. Wea. Rev., 1989, 117: 583-606. doi:  10.1175/1520-0493(1989)117<0583:AVRGMB>2.0.CO;2
    [14]
    Xue M, Droegemeier K K, Wong V. The advanced regional prediction system (ARPS)-A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys., 2000, 75: 161-193. doi:  10.1007/s007030070003
    [15]
    Anthes R A, Warner T T. Development of hydrodynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 1978, 106: 1045-1078. doi:  10.1175/1520-0493(1978)106< 1045:DOHMSF > 2.0.CO; 2
    [16]
    Bougeault P, Mascart P. The MESO-NH Atmospheric Simulation System: Scientific Documentation. CNRS, Meteo France, 2000, personal communication.
    [17]
    Miller M J, Pearce R P. A three-dimensional primitive equation model of cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 1974, 100: 133-154. doi:  10.1002/(ISSN)1477-870X
    [18]
    Schlesinger R E. A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 1975, 32: 934-957. doi:  10.1175/1520-0469(1975)032<0934:ATDNMO >2.0.CO;2
    [19]
    Calrk T L. A small-scale dynamic model using a terrain-following coordinate transformation. J. Comput Phys., 1977, 24: 186-215. doi:  10.1016/0021-9991(77)90057-2
    [20]
    Saito T Kato, Eito H. Documentation of the Meteorological Research Institute /Numerical Prediction Division Unified Nonhydrostatic Model. Forecast Research Department, Meteorological Research Institute, 2002, personal communication. (or http://www.mri-jma.go.jp.).
    [21]
    Klemp J B, Wilhelmson R B. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 1978, 35: 1070-1096. doi:  10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2
    [22]
    Tap M C, White P W. A nonhydrostatic meso-scale model. Quart. J. Roy. Meteor. Soc., 1976, 102: 277-296. doi:  10.1002/(ISSN)1477-870X
    [23]
    Tanguay M, Robert A, Laprise R. A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon. Wea. Rev., 1990, 118: 1970-1980. doi:  10.1175/1520-0493(1990)118<1970:ASISLF>2.0.CO;2
    [24]
    Cullen M J P. A test of a semi-implicit integration technique for a fully compressible nonhydrostatic model. Quart. J. Roy. Meteor. Soc., 1990, 116: 1253-1258. doi:  10.1002/(ISSN)1477-870X
    [25]
    Golding B W. The meteorological office mesoscale model. Meteor. Mag., 1990, 119: 81-96.
    [26]
    Skamarock W C, Klemp J B. The stability of time-split numerical methods for the hydrostatic and nonhydrostatic elastic equations. Mon. Wea. Rev., 1992, 120: 2109-2127. doi:  10.1175/1520-0493(1992)120<2109:TSOTSN>2.0.CO;2
    [27]
    Staniforth A. Regional modeling: a theoretical discussion. Meteor. Atmos. Phys., 1997, 63: 15-29. doi:  10.1007/BF01025361
    [28]
    Cullen M J P. The use of dynamical knowledge of the atmosphere to improve NWWP models. In: Proceedings of ECMWF Workshop on Recent Development in Numerical Methods for Atmospheric Modelling, 1999, Shinfield Park, Reading, U.K., 418-441.
    [29]
    Purser R J, Leslie L M. An efficient interpolation procedure for high-order three-dimensional semi-Lagrangian models. Mon. Wea. Rev., 1991, 119: 2492-2498. doi:  10.1175/1520-0493(1991)119<2492:AEIPFH>2.0.CO;2
    [30]
    Nair R J, Cote J, Staniforth A. Cascade interpolation for semi-Lagrangian advection over the sphere. Quart. J. Roy. Meteor. Soc., 1999, 125: 1445-1468. doi:  10.1002/qj.497.v125:556
    [31]
    Mcdonald A, Bates J R. Improving the estimate of the departure point in a two-time-level semi-Lagrangian and semi-implicit model. Mon. Wea. Rev., 1987, 115: 737-739. doi:  10.1175/1520-0493(1987)115<0737:ITEOTD>2.0.CO;2
    [32]
    Temperton C, Staniforth A. An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Quart. J. Roy. Meteor. Soc., 1987, 113: 1025-1039. doi:  10.1002/qj.49711347714
    [33]
    Hortal M. Aspects of the numerics of the ECMWF model. In: Proceedings of ECMWWF Workshop on Recent Development in Numerical Methods for Atmospheric Modeling, 1999, Shinfield Park, Reading, U.K., 127-143.
    [34]
    Fulton S R. Multigrid methods for elliptic problems: a review. Mon. Wea. Rev., 1986, 114: 943-959. doi:  10.1175/1520-0493(1986)114<0943:MMFEPA>2.0.CO;2
    [35]
    Skamarock W C, Smolarkiewicz P K, Klemp J B. Preconditioned conjugate-residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev., 1997, 125: 587-599. doi:  10.1175/1520-0493(1997)125<0587:PCRSFH>2.0.CO;2
    [36]
    Arakawa A. Computational design for long-term numerical integrations of the equations of atmospheric motion. J. Comput. Phys., 1966, 1: 119-143. doi:  10.1016/0021-9991(66)90015-5
    [37]
    Cullen M J P, Davies T, Mawson M H, et al. An overview of numerical methods for the next generation of NWP and climate models. In: Lin, C., R. Laprise, H. Ritchie, eds. Numerical Methods in Atmospheric and Ocean Modelling (The Andre Robert Memorial Volume), Canadian Meteorological and Oceanographic Society, 1997, Ottawa, Canada, 425-444.
    [38]
    Bates J R, Semazzi F H M, Higgins R W, et al. Integration of the shallow water equation on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev., 1990, 118: 615-627.
    [39]
    Arakawa A, Moorthi S. Baroclinic instability in vertically discrete systems. J. Atmos. Sci., 1987, 45: 1688-1707.
    [40]
    Leslie L M, Purser R J. A comparative study of the performance of various vertical discretization schemes. Meteor. Atmos. Phys., 1992, 50: 61-73. doi:  10.1007/BF01025505
    [41]
    QIAN Jian-Hua, Semazzi F H M, Scroggs J S. A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Mon. Wea. Rev., 1998, 126: 747-770. doi:  10.1175/1520-0493(1998)126<0747:AGNSLA>2.0.CO;2
    [42]
    White A A, Bromley R A. Dynamically-consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quart. J. Roy. Meteor. Soc., 1995, 121: 399-418. doi:  10.1002/(ISSN)1477-870X
    [43]
    Gal-Chen T, Sommerville R C J. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput.Phys., 1975, 17: 209-228. doi:  10.1016/0021-9991(75)90037-6
  • 加载中
  • -->

Catalog

    Figures(1)

    Article views (3667) PDF downloads(1939) Cited by()
    • Received : 2002-09-02
    • Accepted : 2003-03-19
    • Published : 2003-08-31

    /

    DownLoad:  Full-Size Img  PowerPoint