Wang Kaicun, Li Weiliang, Bai Lijie. Characteristics of change and transportof aerosols in the middle and upper troposphere and stratosphere over Indian Ocean and China in 1984-2000. J Appl Meteor Sci, 2004, 15(1): 32-39.
Citation: Wang Kaicun, Li Weiliang, Bai Lijie. Characteristics of change and transportof aerosols in the middle and upper troposphere and stratosphere over Indian Ocean and China in 1984-2000. J Appl Meteor Sci, 2004, 15(1): 32-39.

CHARACTERISTICS OF CHANGE AND TRANSPORTOF AEROSOLS IN THE MIDDLE AND UPPER TROPOSPHERE AND STRATOSPHERE OVER INDIAN OCEAN AND CHINA IN 1984-2000

  • Received Date: 2002-11-26
  • Rev Recd Date: 2003-04-02
  • Publish Date: 2004-02-29
  • The latest version (6.0) daily aerosols extinction dataset of the 1.020 μm zone SAGE Ⅱ was analyzed, and the characteristics of transport and change of aerosol optical depth in the middle and upper troposphere and the stratosphere (above 10 kilometer high) was given. The results show that aerosol optical depth in the low latitude is larger than that in the higher latitude. There are three high value centers over the island in Indian Ocean. The high value centers of aerosol optical depth are corresponding with the high value of up flow in the middle and upper troposphere. Comparing to the average of the 17 years (1984—2000), latest 6 years the aerosol optical depth from the Bengal Bay to the southeast of the Tibetan Plateau increases distinctively. Contrary to the middle and eastern of China, the aerosol optical depth over the eastern of China is decreased. Aerosol optical depth has three longitudinal increasing zones and two longitudinal decreasing zones. The Brewer-Dobson circulation between the middle latitude and the equator area causes these longitudinal change zones. This transporting of aerosols between the lower layer and middle and upper layer atmosphere may cause important climate change。
  • Fig. 5  英文标题

  • [1]
    Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosols. Science, 1992, 255: 422-430.
    [2]
    Kiehl J T, Briegleb B P. The relative role of sulfate aerosols and greenhouse gases in climate forcing. Science, 1993, 260: 311-314. doi:  10.1126/science.260.5106.311
    [3]
    Taylor K E, Penner J E. Response of the climate system to atmospheric aerosols and greenhouse gases. Nature, 1994, 369:734-73. doi:  10.1038/369734a0
    [4]
    Tuck A F D, Baumgradner K R, Chen K R, et al. The Brewer-Dobson circulation in the light of high latitude in situ aircraft observations. Quarterly Journal Royal Meteorological Society, 1997, 123(537): 1-69.
    [5]
    [6]
    Lieveld J, Crutzen P J, Ramanathan V, et al. The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science, 2001, 291(5506): 1031-1037. doi:  10.1126/science.1057103
    [7]
    Ramanathan V, Crutzen P J, Kiehl J T, et al. Aerosols, climate and the hydrological cycle. Science, 2001,294(5549): 2119-2124. doi:  10.1126/science.1064034
    [8]
    Satheesh S K, Ramanathan V. Large differences in tropical aerosol forcing at te top of the atmosphere and Earth's surface. Nature, 2000, 405:60-63. doi:  10.1038/35011039
    [9]
    Mauldin L E, Zaun N H, Mccormick M P, et al. Stratospheric aerosol and gas experiment II instrument: a functional description. Optical Engineering, 1985, 24(2): 307-312.
    [10]
    Russell P B, Mccormick M P. Sage II aerosol data validation and initial data use: An introduction and overview. J.G.R., 1989, 94(D6): 8335-8338. doi:  10.1029/JD094iD06p08335
    [11]
    Osborn M T, Rosen J M, Mccormick M P, et al. Sage II aerosol correlative observations: profile measurements. J.G.R., 1989, 94(D6): 8353-8366. doi:  10.1029/JD094iD06p08353
    [12]
    Oberbeck V R, Livingston J M, et al. Sage II aerosol validation: selected altitude measurements, including particle micro-measurements. J.G.R., 1989, 94(D6): 8367-8380. doi:  10.1029/JD094iD06p08367
    [13]
    Ackerman M, Brogniez C, Diallo B S, et al. European validation of Sage II aerosol profile. J.G.R., 1989, 94(D6): 8399-8411. doi:  10.1029/JD094iD06p08399
    [14]
    Brogiez C, Santer R, Diallo B S, et al. Comparative observations of stratospheric aerosols by ground-based lidar, balloon-borne polarimeter, and satellite solar occultation. J.G.R. 1992, 97(D18): 20805-20823. doi:  10.1029/92JD01919
    [15]
    Thomason L W, Poole L R, Deshler T. A global climatology of stratospheric aerosol surface area density deduce from stratospheric aerosol and gas experiment II measurement: 1984-1994. J.G.R., 1997, 102(D7): 8967-8976. doi:  10.1029/96JD02962
    [16]
    Brogiez C, Lenoble J. Analysis of 5-year aerosol data from the stratospheric aerosol and gas experiment II. J.G.R., 1991, 96(D8): 15479-15497. doi:  10.1029/91JD01280
    [17]
    Li W L, Yu S M. Spatio-temporal characteristics of aerosol distribution over Tibetan Plateau and numerical simulation of radioactive forcing and climate response. SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2001, 44(Suppl.): 375-384.
    [18]
    Cong C H, Li W L, Zhou X J. Mass exchange between stratosphere and troposphere over the Tibetan Plateau and its surroundings. Chinese Science Bulletin, 2002, 47(6): 508-512. doi:  10.1360/02tb9117
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (3381) PDF downloads(1774) Cited by()
    • Received : 2002-11-26
    • Accepted : 2003-04-02
    • Published : 2004-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint