Yang Yanrong, Li Bai, Zhang Peiyuan. Doppler radar data's four dimensional variational assimilation. J Appl Meteor Sci, 2004, 15(1): 95-110.
Citation: Yang Yanrong, Li Bai, Zhang Peiyuan. Doppler radar data's four dimensional variational assimilation. J Appl Meteor Sci, 2004, 15(1): 95-110.

DOPPLER RADAR DATA' S FOUR DIMENSIONAL VARIATIONAL ASSIMILATION

  • Received Date: 2002-12-24
  • Rev Recd Date: 2003-05-06
  • Publish Date: 2004-02-29
  • The four-dimensional variational assimilation of Doppler-radar data (4DVAR) in theory was analyzed. Its main course and basic ideas were discussed. Then the four-dimensional variational Dopple radar analysis system (4D-VDRAS) was emphasized, the cost function was defined, and conjugate formulate and simile adjoint were applied to educe its minimum. In addition, radar disposing and Barnes insert technique were introduced. The application of 4D-VDRAS was discussed.
  • [1]
    Larry Armijo. A theory for determination of wind and precipitation with Doppler radars. J. Atmos. Sci., 1969, 26: 570-573. doi:  10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2
    [2]
    Doviak R J P S, Strauch R G, Miller L J. Error estimation in wind field derived from dual-Doppler radar measurement. J. Applied. Metero., 1976, 15: 868-878.
    [3]
    Gal-Chen T. A method for the initialization of the anelastic equations:Implications for matching models with observations. Mon. Wea. Rev., 1978, 106: 587-606. doi:  10.1175/1520-0493(1978)106<0587:AMFTIO>2.0.CO;2
    [4]
    Lewis J M, Derber J C. The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus, 1985, 37A: 309-322. doi:  10.1111/tela.1985.37A.issue-4
    [5]
    Talagrand O, Courtier P. Variational assimilation of meteorological observations with the adjoint vorticity equation. Ⅰ: Theory. Quart. J. Rou. Meteor. Soc., 1987, 113: 1311-1328. doi:  10.1002/qj.49711347812
    [6]
    Wolfsberg D. Retrieval of three-dimensional wind and temperature fields from single-Doppler radar data. CIMMS Rep.84, 1987. 91 pp.
    [7]
    Sun J, et al. Recovery of three-dimensional wind and temperature fields from single-Doppler radar data. J. Atmos. Sci., 1991, 48: 876-890. doi:  10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2
    [8]
    Sun J, Crook N. Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observed during Phoenix Ⅱ. Mon. Wea. Rev., 1994, 122: 1075-1091. doi:  10.1175/1520-0493(1994)122<1075:WATRFS>2.0.CO;2
    [9]
    Sun J, Crook N. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅰ: Model development and simulated data experiments. J. Atmos. Sci., 1997, 54: 1642-1661. doi:  10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
    [10]
    Sun J, Crook N. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part Ⅱ: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 1998, 55: 835-852. doi:  10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2
    [11]
    Wu B, Verlinde J, Sun J. Dynamical and microphysical retrieval form Doppler radar observations of a deep convective cloud. J. Atmos. Sci., 2000, 57: 262-283. doi:  10.1175/1520-0469(2000)057<0262:DAMRFD>2.0.CO;2
    [12]
    Weygandt S. The retrieval of initial forecast fields from single-Doppler observations of a supercell thunderstorm. Ph.D. 1998.
    [13]
    Gao J, Xue M, Wang Z, et al. The initial condition and explicit prediction of convection using ARPS adjoint and other retrieval methods with WSR-88D data. AZ, Amer. Meteor. Soc., 1998. 176-178.
    [14]
    周毅,刘宇迪,等. 现代数值天气预报. 北京:气象出版社,2002. 197.
    [15]
    Sun J, Crook N. Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. And Forc., 2000, 16: 117-123.
    [16]
    Gill P E, Murry W, Wright M H. Practical Optimization. Academic Press, 1981.401.
    [17]
    Xu Q, et.al. Adjoint-method retrievals of low-altitude wind fields from single-Doppler reflectivity and radial-wind data. J. Atmos. Oceanic. Tech., 1995, 12: 1112-1115.
    [18]
    Xu Q, Qiu. Simple adjoint methods for single-Doppler wind analysis with a strong constrain of mass conservation. J. Atmos. Oceanic Thch., 1994, 11: 289-298. doi:  10.1175/1520-0426(1994)011<0289:SAMFSD>2.0.CO;2
    [19]
    Xu Q, et al. Adjoint-method retrieval of low-altitude wind fields from single-Doppler reflectivity measured during Phoenix Ⅱ. J. Atmos. Oceanic Thch., 1994a, 11: 275-288. doi:  10.1175/1520-0426(1994)011<0275:AMROLA>2.0.CO;2
    [20]
    Xu Q, et al. Adjoint-method retrievals of low-latitude wind field from single-Doppler wind data. J. Atmos. Oceanic Tech., 1994b, 11: 579-585. doi:  10.1175/1520-0426(1994)011<0579:AMROLA>2.0.CO;2
    [21]
    Sasaki Y K. Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 1970, 98: 875-883. doi:  10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2
    [22]
    Milija Zupanski. A preconditioning algorithm for four-dimensional variational data assimilation. Mon.Wea.Rev., 1996, 124: 2562-2566.
    [23]
    Golub G H, et al. Matrix computations. The Johns Hopkins University Press, 1989. 642.
    [24]
    陆汉城. 中尺度天气原理和预报. 北京:气象出版社,2000.189-191.
    [25]
    Warner T T, Brandes E E, Sun J, et al. Predicition of a flash flood in complex terrain. PartⅠ: A comparison of rainfall estimates from radar and very short range rainfall simulations from a dynamic model and an automated algorithmic system. J. Appl. Meteor., 2000, 39: 797-814. doi:  10.1175/1520-0450(2000)039<0797:POAFFI>2.0.CO;2
    [26]
    Guo Y, Kuo Y-H, Dudhia J, et al. Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon.Wea.Rev., 2000, 128: 619-643.
    [27]
    Michelson S A, Seaman N L. Assimilation of NEXRAD-VAD winds in summertime meteorological simulation over the northeastern United States. J. Appl. Meteor., 2000,39: 367-383. doi:  10.1175/1520-0450(2000)039<0367:AONVWI>2.0.CO;2
    [28]
    Xu M, Crook N A, Sun J, et al. Assimilation of radar data for 1-4 hour snowband forecasting using a mesoscale model. Preprints, 14th Conf. On Numerical Weather Prediction, Fort Lunderdale, Florida, Amer. Meteor. Soc., 2001. 283-286.
  • 加载中
  • -->

Catalog

    Figures(1)

    Article views (4383) PDF downloads(3356) Cited by()
    • Received : 2002-12-24
    • Accepted : 2003-05-06
    • Published : 2004-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint