Zhou Guangqiang, Zhao Chunsheng, Qin Yu, et al. A simple parameterization scheme of snow-particle radiative properties and effect on mesoscale precipitation. J Appl Meteor Sci, 2006, 17(2): 129-137.
Citation: Zhou Guangqiang, Zhao Chunsheng, Qin Yu, et al. A simple parameterization scheme of snow-particle radiative properties and effect on mesoscale precipitation. J Appl Meteor Sci, 2006, 17(2): 129-137.

A Simple Parameterization Scheme of Snow-particle Radiative Properties and Effect on Mesoscale Precipitation

  • Received Date: 2005-04-18
  • Rev Recd Date: 2005-07-07
  • Publish Date: 2006-04-30
  • Snow-particle, which is produced in Bergeron process, is a kind of solid particles in cloud. Snow-particle takes part in several microphysical processes, so it presents in different shapes. The multi-shape feature makes it difficult to develop a direct and detailed parameterization of the snow-particle radiative properties. At present, the water content and number concentration of snow water are predictable in newly developed dual-parameterized explicit moisture schemes, such as Reisner scheme and CAMS scheme. Consequently, the development of a simple parameterization scheme of snow-particle radiative properties becomes possible.An individual parameterization scheme, in which all snow radiative properties are determined by effective size, is set up and implemented in MM5 V3 mesoscale model. A study on the effect of snow radiation on mesoscale precipitation is carried out using a South China severe storm case on June 8th, 1998. Four numerical experiments are designed to represent no snow radiative effect, assuming snow-particle as a part of graupel and ice crystal, and to calculate snow radiation using the algorithm set up respectively.The distribution of snow water and its effect on the rainfall pattern, domain averaged integration rainfall and rain rate are investigated. The numerical experiment results show that the effect of snow radiation on mesoscale precipitation is obvious:① Snow water plays an important role in the atmospheric water substances, it has the largest water content and the second largest number concentration; ② Snow radiation distinctly modifies the local properties of precipitation, especially the rain rate and position of rainfall center, though it has little effect on overall precipitation pattern; ③ The effect of snow radiation on precipitation during the daytime is much larger than that during the nighttime; ④ Distinct difference among the different experiment results indicates the necessity of establishment of an independent snow-particle radiative properties parameterization.The discussion on the influences of snow radiation on precipitation shows that the indirect effect, which is the convective enhancement due to the relative snow radiative heating, contributes to the major rainfall variation. The radiative absorption of snow water heats the middle and upper atmosphere, causes stronger convection and produces more precipitation as a result. While the direct decreasing effect of snow radiative heating by microphysics is relatively neglectable.In general, the effect of snow-particle radiation on mesoscale precipitation is obvious and an independent snow radiative properties parameterization is much necessary for the improvement of the ability of mesoscale model on the precipitation prediction.
  • [1]
    Fu Q, Krueger S K, Liou K-N. Interactions of radiation and convection in simulated tropical cloud clusters. J Atmos Sci, 1995, 52:1311-1328. http://cat.inist.fr/?aModele=afficheN&cpsidt=3519322
    [2]
    Tao W-K, Lang S, Simpson J, et al. Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. J Atmos Sci, 1996, 53:2624-2651. doi:  10.1175/1520-0469(1996)053<2624:MOCRII>2.0.CO;2
    [3]
    Sui C-H, Li X, Lau K-M.Radiative convective processes in simulated diurnal variations of tropical oceanic convection. J Atmos Sci, 1998, 55:2345-2357. doi:  10.1175/1520-0469(1998)055<2345:RCPISD>2.0.CO;2
    [4]
    Xu K-M, Randall D A.Impacts of interactive radiative transfer on the microscopic behavior of cumulus ensembles. Part Ⅰ:Mechanisms for cloud-radiation interactions. J Atmos Sci, 1995, 52:800-817. doi:  10.1175/1520-0469(1995)052<0800:IOIRTO>2.0.CO;2
    [5]
    赵春生, 丁守国, 秦瑜.云内辐射传输过程对对流降水过程的影响.自然科学进展, 2003, 13(10):1060-1066. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200310010.htm
    [6]
    Chin H-N S.The impacts of the ice phase and radiation on a midlatitude squall line system. J Atmos Sci, 1994, 51:3320-3343. doi:  10.1175/1520-0469(1994)051<3320:TIOTIP>2.0.CO;2
    [7]
    Chin H-N S, Fu Q, Bradley M M, et al. Modeling of a tropical squall line in two dimensions and its sensitivity to environment winds and radiation. J Atmos Sci, 1995, 52:3172-3193. doi:  10.1175/1520-0469(1995)052<3172:MOATSL>2.0.CO;2
    [8]
    Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a two-dimensional model.J Atmos Sci, 1989, 46:3077-3107. doi:  10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [9]
    Churchill D D, Houze Jr R A. Effect of radiation and turbulence on the diabatic heating and water budget of the stratiform region of a tropical cloud cluster. J Atmos Sci, 1991, 48:903-922. doi:  10.1175/1520-0469(1991)048<0903:EORATO>2.0.CO;2
    [10]
    Miller R A, Frank W M.Radiative forcing of simulated tropical cloud clusters. Mon Wea Rev, 1993, 121:482-498. doi:  10.1175/1520-0493(1993)121<0482:RFOSTC>2.0.CO;2
    [11]
    丁守国.积云过程中云与辐射相互作用研究.北京:北京大学地球物理系, 2001.
    [12]
    Pruppacher H R, Klett J D. Microphysics of Clouds and Precipitation. Boston:Kluwer Academic Publishers, 1997.
    [13]
    周广强, 赵春生, 丁守国, 等.不同辐射传输方案对中尺度降水影响的对比分析.应用气象学报, 2005, 16(2):148-158. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050219&flag=1
    [14]
    汪宏七, 赵高祥.云微物理特性对云光学和云辐射性质的影响.应用气象学报, 1996, 7(1):36-44. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960105&flag=1
    [15]
    楼小凤. MM5模式的新显式云物理方案的建立和耦合及原微物理方案的对比分析.北京:北京大学物理学院大气科学系, 2002.
    [16]
    Lou X-F, Hu Z-J, Shi Y-Q, et al.Numerical simulation of a heavy rainfall case in South China. Adv Atmos Sci, 2003, 20:128-138. doi:  10.1007/BF03342057
    [17]
    Reisner J, Rasmussen R J, Bruintjes R T.Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model.Quart J Roy Meteor Soc, 1998, 124B:1071-1107. http://opensky.ucar.edu/islandora/object/articles:3987
    [18]
    Kiehl J T, Hack J J, Bonan G B, et al.Description of the NCAR Community Climate Model Version 3 (CCM3). NCAR Technical Note, NCAR, TN-420+STR, 1996. http://opensky.ucar.edu/islandora/object/technotes:187
    [19]
    张国栋.冰云短波辐射特性参数化.应用气象学报, 1997, 8 (3):284-292. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970341&flag=1
    [20]
    Fu Q, Liou K-N.On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres.J Atmos Sci, 1992, 49:2139-2156. doi:  10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
    [21]
    Liou K-N, Fu Q. A simple formulation of the delta-four-stream approximation for radiative transfer parameterization. J Atmos Sci, 1988, 45:1940-1947. doi:  10.1175/1520-0469(1988)045<1940:ASFOTD>2.0.CO;2
    [22]
    廖国男著.周诗健译.大气辐射导论.北京:气象出版社, 1985:250-254.
    [23]
    Fu Q, Liou K-N. Parameterization for the radiative properties of cirrus cloud. J Atmos Sci, 1993, 50:2008-2025 doi:  10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
    [24]
    Stephens G L. Review:the parameterization of radiation for numerical weather prediction and climate models. Mon Wea Rev, 1984, 112:826-867. doi:  10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (2334) PDF downloads(1253) Cited by()
    • Received : 2005-04-18
    • Accepted : 2005-07-07
    • Published : 2006-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint