Hu Jianglin, Shen Xueshun, Zhang Hongliang, et al. Characteristics of GRAPES dynamical core in long term integration. J Appl Meteor Sci, 2007, 18(3): 276-284.
Citation: Hu Jianglin, Shen Xueshun, Zhang Hongliang, et al. Characteristics of GRAPES dynamical core in long term integration. J Appl Meteor Sci, 2007, 18(3): 276-284.

Characteristics of GRAPES Dynamical Core in Long Term Integration

  • Received Date: 2006-03-08
  • Rev Recd Date: 2007-01-12
  • Publish Date: 2007-06-30
  • In order to evaluate the characteristics of the dynamical core of GRAPES (Global/Regional Assimilation and PrEdiction System) and to verify whether the GRAPES dynamical core can be taken as a framework of AGCM, the long time integration has been carried out with GRAPES dynamical core followed by the benchmark test similar to the technique introduced by Held and Suarez. The GRAPES has a finite-difference dynamical core with fully compressible, non-hydrostatic framework and semi-implicit and semi-lagrangian (SISL) time integration scheme using latitude and longitude horizontal coordinate as well as following terrain height vertical coordinate. The computational design uses two simple physical processes to represent physics processes in the model during the time integration. The first process is to relax the model variant, potential temperature, to a prescribed potential temperature field which is a function of latitude and height during the model time integration. Following Held and Suarez, the second one is the momentum drag in the lower troposphere to consume the kinetic energy in the model atmosphere. The GRAPES dynamical core runs with 31 levels in vertical direction and 3 horizontal resolutions:1.25°, 2.5°and 5.0°latitude or longitude. The benchmark tests integrate for 1460 days under each horizontal resolution and the last 1000 days data are analyzed by discarding the previous 460 day results. The statistic results show that the GRAPES dynamical core can reproduce basic features of atmospheric circulation, including reasonably realistic zonal mean temperature and its eddy variance as well as zonal-mean wind and its eddy variance. A single westerly jet is generated with maximum strength of roughly 28 m/s near 45°latitude in the tropopause. And eddy temperature variance shows two middle latitude maxima, one in the low troposphere and the other above tropopause. The GRAPES dynamical core also shows stability for the energy and momentum as well as vertical wind speed during the long term integration although SISL scheme does not observe the conservations. The GRAPES dynamical core has convergence features along with increasing resolution, although 5.0° resolution in latitude and longitude may be too coarse to represent the circulation details. Finally, the sensitivity to non-hydrostatic is discussed. The results indicate that it is feasible using the GRAPES frame as a dynamical core for AGCM and climate investigation. The numerical experiments provide clues and evidences for GRAPES dynamical core improvement also.
  • Fig. 1  The distributions of equilibrium potential temperature (a) and temperature (b) with latitude and air pressure (unit:K)

    Fig. 2  The averaged fields with 1000 d simulations produced by GRAPES dynamical core using the resolution of 1.25°×1.25°grid points and 31 levels (a) zonal mean temperature (unit:K), (b) mean zonal wind (unit:m/s), (c) zonal vertical speed (unit:m/s)

    Fig. 3  The eddy variance with 1000 d simulations produced by GRAPES dynamical core using the resolution of 1.25°×1.25°grid points and 31 levels (a) temperature (unit:K2), (b) zonal wind (unit:m2·s-2)

    Fig. 4  The variables produced by the 1.25°×1.25°grid points and 31 levels GRAPES dynamical core with 1000 d simulation (a) general energy, (b) the zonal wind moment, (c) kinetic energy produced by vertical movement per unit mass (averaged by global)

    Fig. 5  The zonal mean temperature averaged with 1000 d simulations produced by GRAPES dynamical core with varied horizontal resolutions (unit:K)(a)2.5°×2.5°, (b)5.0°×5.0°

    Fig. 6  Same as in Fig. 5 but for zonal wind (unit:m·s-1)(a)2.5°×2.5°, (b)5.0°×5.0°

    Fig. 7  The difference between nonhydrostatic and hydrostatic for zonal mean temperature (unit:K)(a) and wind (unit:m/s)(b) with 1000 d simulations produced by GRAPES dynamical core

  • [1]
    陈德辉, 薛纪善.数值天气预报业务模式现状与展望.气象学报, 2004, 62(5):623-633. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200405009.htm
    [2]
    薛纪善.新世纪初我国数值天气预报的科技创新研究.应用气象学报, 2006, 17(5):601-610. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605103&flag=1
    [3]
    陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    [4]
    伍湘君, 金之雁, 黄丽萍, 等.GRAPES模式软件框架与实现.应用气象学报, 2005, 16(4):539-546. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050468&flag=1
    [5]
    黄丽萍, 伍湘君, 金之雁.GRAPES模式标准初始化方案设计与实现.应用气象学报, 2005, 16(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050346&flag=1
    [6]
    叶成志, 欧阳里程, 李象玉, 等.GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析.热带气象学报, 2006, 16(4):539-546. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200604011.htm
    [7]
    李耀辉, 赵建化, 薛纪善, 等.基于GRAPES的西北地区沙尘暴数值预报模式极其应用研究.地球科学进展, 2005, 20(9): 999-1011. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200509009.htm
    [8]
    章建成, 刘奇俊.GRAPES模式不同云物理方案对短期气候模拟的影响.气象, 2006, 32(7):3-12. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200607000.htm
    [9]
    Arakawa A. Computational design for long-term numerical integration of the equations of fluid motion:Two-dimensional incompressible flow, part Ⅰ. J Comput Phys, 1966, 1:119-143. doi:  10.1016/0021-9991(66)90015-5
    [10]
    Zhang Xuehong, Liang Xinzhong. Comparison and examination of dynamic frameworks of IAP and OSU AGCM. Adv Atmos Sci, 1989, 6:265-274. doi:  10.1007/BF02661533
    [11]
    左瑞亭, 张铭, 张东凌, 等.21层大气环流模式IAP AGCM-Ⅲ的设计及气候数值模拟:Ⅰ动力框架.大气科学, 2004, 28(5): 659-674. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200405001.htm
    [12]
    梁丹青, 张铭, 曾庆存.分块地形坐标大气环流模式框架的计算稳定性及数值试验.大气科学, 2005, 29(3):354-362. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200503002.htm
    [13]
    Wang Bin, Wan Hui, Ji Zhongzhen, et al. Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Science in China Ser A Mathematics, 2004, 47:4-21. doi:  10.1360/04za0001
    [14]
    王斌, 季仲贞.大气科学中的数值新方法及其应用.北京:科学出版社, 2006:200-205.
    [15]
    Gates W L. The atmospheric model intercomparison project. Bull Amer Meteor Soc, 1992, 73:1962-1970. doi:  10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
    [16]
    Williamson D L, Drake J B, Hack J J, et al. A standard test for numerical approximations to the shallow water equations in spherical geometry. J Comput Phys, 1992, 102:211-224. doi:  10.1016/S0021-9991(05)80016-6
    [17]
    Held I H, Suarez M J. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Amer Meteror Soc, 1994, 75:1825-1830. doi:  10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2
    [18]
    Boer G J, Denis B. Numerical convergence of the dynamics of a GCM. Climate Dyn, 1997, 13, 359-374. doi:  10.1007/s003820050171
    [19]
    Polvani L M, Scott R K, Thomas S J. Numerical converged solutions of the global primitive equations for testing the dynamical core of atmospheric GCMs. Mon Wea Rev, 2004, 132:2539-2552. doi:  10.1175/MWR2788.1
    [20]
    Trenberth K E, Olson J G. ECMWF Global Analyses 1979-1986: Circulation Statistics and Data Evalution. NCAR/TN-300+STR, NCAR Technical Note, 1988.
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (4817) PDF downloads(1843) Cited by()
    • Received : 2006-03-08
    • Accepted : 2007-01-12
    • Published : 2007-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint