Tan Yan, Chen Dehui. Meso-scale ensemble forecasts on physical perturbation using a non-hydrostatic model. J Appl Meteor Sci, 2007, 18(3): 396-406.
Citation: Tan Yan, Chen Dehui. Meso-scale ensemble forecasts on physical perturbation using a non-hydrostatic model. J Appl Meteor Sci, 2007, 18(3): 396-406.

Meso-scale Ensemble Forecasts on Physical Perturbation Using a Non-hydrostatic Model

  • Received Date: 2005-10-08
  • Rev Recd Date: 2006-09-18
  • Publish Date: 2007-06-30
  • The past decade has seen increasing interest in ensemble methods for operational numerical weather prediction. Ensemble forecasting is motivated by the recognition that numerical predictions always contain both initial condition uncertainties and numerical model uncertainties. It is traditionally desirable to use an ensemble method focused mainly on uncertainties in the initial conditions for the medium range forecasts. Encouraged by the success of global medium-range ensemble forecast, investigations are made in examining the short-range ensemble forecast (SREF) with meso-scale models. It is found that the ensemble approach could also improve short-range weather forecasts, especially the forecasting of quantitative precipitation, meso-scale convective systems. However, it is still challenging for meso-scale ensemble forecast due to the difficulty to generate a well spreading perturbation which triggers meso-scale and convective processes in a short time.Motivated by the previous studies on meso-scale ensemble forecasts, a meso-scale ensemble forecast system based on a limited area non-hydrostatic meso-scale NWP model (GRAPES-Meso) is carried out, to construct meso-scale ensemble, especially considering the perturbation of the physical sensitive factors and the initial conditions. As a preliminary step, the objective of the study is to understand the impact of model physics uncertainties on predicting extreme precipitation events using meso-scale ensemble forecast. A flash flood case on July 10, 2004 in Beijing is particularly chosen for the study of a 36 h meso-scale ensemble forecast. The "7.10" flash flood causes a high impact on traffic and open air activities because of the failure of the forecast. In particular, the uncertainties in convective parameterization schemes are focused on. The members of SREF are constructed by specifying the closure assumptions, triggering parameters and precipitation efficiency. Meanwhile meso-scale ensemble forecast is constructed using multi-physical parameterizations and the uncertainty of initial condition is added using the Monte Carlo method.The verification results show some characteristics of the meso-scale system could be captured by GRAPES and meso-scale ensemble is feasible to improve on the forecast site and the forecast intensify of the precipitation. Different ensemble experiment has different result, even in the same experiment, members differ with each other, and it means there is an appropriate spread among members. In spread analysis, from the surface to the middle-level of troposphere there is a maximum value area in Beijing, i.e., this area has large uncertainties. Meanwhile it is found that it's difficult to construct ensemble system only considering model uncertainties, if initial condition uncertainties are added, the results are preliminary but encouraging, it is helpful to capture more meso-scale information and construct more effective meso-scale ensemble system.
  • Fig. 1  Stamp charts of 850 hPa geopotential height with model integrated time of 36 h (unit:gpm)

    (a) T213 analysis field, (b) control run, (s2)—(s8) experiment SP, (t2)—(t8) experiment Tendency, (d2)—(d8) experiment DP, (di2)—(di8) experiment DP+IC

    Fig. 2  Stamp charts of 24 h accumulated rainfall at July 11, 2004 (unit: mm)

    (a) observation rainfall, (b) control run, (s2)-(s8) experiment SP.(t2)-(t8) experiment Tendency, (d2)-(d8) experiment DP. (di2)-(di8) experiment DP+IC

    Fig. 3  Ensemble mean of 24 h accumulated rainfall of 8 members from experiment Tendency (unit:mm)(a), the probability over 25 mm (b) and the spread of 36 h rainfall (c)

    Fig. 4  The spread of geopotential height at different levels with model integrated time of 36 h from experiment Tendency (a)500 hPa, (b)700 hPa, (c)850 hPa, (d)925 hPa, (e)1000 hPa

    Fig. 5  Talagrand diagram of u wind with model integrated time of 36 h

    (a) experiment SP, (b) experiment Tendency, (c) experiment DP, (d) experiment DP+IC

    Table  1  The configuration of ensemble members of different factors

    Table  2  The configuration of ensemble members of multiple physical parameterizations

    Table  3  The magnitude of different variable in the initial field

    Table  4  The Q value of different experiments

  • [1]
    Epstein E S. Stochastic dynamic prediction.Tellus, 1969, 21:739-759. doi:  10.1111/j.2153-3490.1969.tb00483.x/abstract
    [2]
    Leith C E. Theoretical skill of Monte Carlo forecasts.Mon Wea Rev, 1974, 102:409-418. doi:  10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
    [3]
    Toth Z, Kalnay E.Ensemble forecasting at NMC:The generation of perturbations.Bull Amer Meteor Soc, 1993, 74:2317-2330. doi:  10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
    [4]
    Molteni F, Palmer T N, Buizza R, et al. The ECMWF ensemble prediction system:Methodology and verification.Quart J Roy Met Soc, 1996, 122:73-121. doi:  10.1002/(ISSN)1477-870X
    [5]
    Harrison M S.Analysis and model dependcies in medium-range forecast:Two transplant case studies.Quart J Roy Meteor Soc, 1999, 126:711-724. doi:  10.1002/qj.49712555908/abstract
    [6]
    Hou D, Kalnay E, Droegemier K K.Objective verification of the SAMEX'98 ensemble forecasts.Mon Wea Rev, 2001, 129:73-91. doi:  10.1175/1520-0493(2001)129<0073:OVOTSE>2.0.CO;2
    [7]
    Alberto Arribas.Results of an Initial Stochastic Physics Scheme for the Met Office Unified Model. Forecasting Research Technical Report, No. 452, 2004.
    [8]
    Haill T M, Colucci S J. Verification of Eta-RSM short-range ensemble forecasts.Mon Wea Rev, 1997, 125:1312-1327. doi:  10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
    [9]
    Houtekamer P L, Lefaivre L, Derome J, et al. A system simulation approach to ensemble prediction.Mon Wea Rev, 1996, 124:1225-1242. doi:  10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
    [10]
    Mylne K R, Evans R E, Clark R T.Multi-model multi-analysis ensemble forecasting in quasi-operational medium range forecasting.Quart J Roy Meteor Soc, 2002, 128:361-384. doi:  10.1256/00359000260498923
    [11]
    Stensrud D J, Brooks H E. Using ensemble for short-range forecasting.Mon Wea Rev, 1999, 127:433-446. doi:  10.1175/1520-0493(1999)127<0433:UEFSRF>2.0.CO;2
    [12]
    Stensrud D J, Bao J, Warner T.Using initial condition and model physics perturbation in short-range ensemble simulations of mesoscale connective system.Mon Wea Rev, 2000, 128:2077-2107. doi:  10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2
    [13]
    Mullen S L, Du J. Monte Carlo Forecasts of Explosive Cyclogenesis with a Limited-area, Mesoscale Model.Preprints, 10th Conference on Numerical Weather Prediction, Portland, Oregon, Amer Meteor Soc, 1994:638-640.
    [14]
    Du J, Mullen S L, Sanders F. Short-range ensemble forecasting of quantitative precipitation.Mon Wea Rev, 1997, 125:2427-2459. doi:  10.1175/1520-0493(1997)125<2427:SREFOQ>2.0.CO;2
    [15]
    Stensrud D J, Fritsch J M. Mesoscale convective system in weakly forced large-scale environments.Part Ⅱ:Generation of a mesoscale initial condition.Mon Wea Rev, 1994, 122:2068-2083. doi:  10.1175/1520-0493(1994)122<2068:MCSIWF>2.0.CO;2
    [16]
    Stensrud D J, Fritsch J M.Mesoscale convective system in weakly forced large-scale environments.Part Ⅲ:numerical simulations and implications for operational forecasting.Mon Wea Rev, 1994, 122:2084-2104. doi:  10.1175/1520-0493(1994)122<2084:MCSIWF>2.0.CO;2
    [17]
    Buizza R, Miller M, Palmer T N.Stochastic representation of model uncertainties in the ECMWF EPS.Quart J Roy Meteor Soc, 1999, 125:2887-2908. doi:  10.1002/qj.49712556006
    [18]
    Lin J W B, Neelin J D.Influence of a stochastic moist convective parameterization on tropical climate variability.Geophys Res Lett, 2000, 27:3691-3694. doi:  10.1029/2000GL011964
    [19]
    王晨稀, 端义宏.短期集合预报技术在梅雨降水预报中的试验研究.应用气象学报, 2003, 14(1):69-78. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030108&flag=1
    [20]
    陈静.中尺度暴雨短期集合预报研究.北京:中国气象科学研究院, 2003.
    [21]
    中国气象科学研究院数值预报研究中心.中国气象局新一代数值预报系统创新研究计划及阶段成果. 2004:3.
    [22]
    张大林.各种非绝热物理过程在中尺度模式中的作用.大气科学, 1998, 22(4):548-561. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.015.htm
    [23]
    陈静.物理过程参数化方案对中尺度暴雨数值模拟影响的研究.气象学报, 2003, 61(2):203-218. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200302005.htm
    [24]
    Kain J S. The Kain-Fritsch convective paramaterization:An update.J Appl Meteor, 2004, 43:170-181. doi:  10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [25]
    陈德辉.积云对流参数化技术.应用气象学报, 1997, 8(增刊):69-77. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.009.htm
    [26]
    廖洞贤, 柳崇健.数值天气预报中的若干新技术.北京:气象出版社, 1995:7.
    [27]
    Talagrand O, Vautard R. Evaluation of Probabilistic Prediction System. Workshop on Predictability ECMWF. 1997, 10:20-22. https://www.researchgate.net/publication/228370765_Evaluation_of_probabilistic_prediction_system_for_a_scalar_variable
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (3916) PDF downloads(1568) Cited by()
    • Received : 2005-10-08
    • Accepted : 2006-09-18
    • Published : 2007-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint