He Lifu, Chen Tao, Zhou Qingliang, et al. The meso β-scale convective system of a heavy rain event on July 10, 2004 in Beijing. J Appl Meteor Sci, 2007, 18(5): 655-665.
Citation: He Lifu, Chen Tao, Zhou Qingliang, et al. The meso β-scale convective system of a heavy rain event on July 10, 2004 in Beijing. J Appl Meteor Sci, 2007, 18(5): 655-665.

The Meso β-Scale Convective System of a Heavy Rain Event on July 10, 2004 in Beijing

  • Received Date: 2006-03-20
  • Rev Recd Date: 2007-03-12
  • Publish Date: 2007-10-31
  • An analysis on the meso β-scale convective system of a heavy rain event on July 10, 2004 in Beijing is performed by using the special observational data, including automatic meteorological stations data, radar images and satellite images and NCEP/NCAR reanalysis data on the basis of successful simulation. It is found that the heavy rainfall process is generated by a meso β-convective system which is produced in a large scale warm area. The short wave trough in the mid level of troposphere, the convergence between the southwest air current from west wind trough and the southeast air current from the north part of warm shear line in low troposphere provide a good background condition. The meso β-scale convective system is formed by the mergence of two meso-scale convective clusters, it shows an ellipse shape structure of a horizontal scale of 150 km×100 km and the time scale of about 5 hours. It shows the features of the meso-scale convergence line(or convergence center)in low levels stream fields during its occurrence and development stage, and the strong meso-scale convective clouds echo band and meso-scale convergence line exhibited in radar reflectivity image and in radar velocity fields are often related with the occurrence and the development of the meso β-scale convective system. During the stage of strong development, the meso β-scale convective system shows strong baroclinity perpendicular features and has a similar structure of slantwise updraft current to convective storm. Its occurrence and development are forced by the meso-scale convergence line of low troposphere in strong convective instability condition and a warm tongue below 700 hPa. The convergence between the southern air current and eastern air current and the invading of the cold air in the boundary layer lead to the strengthen of the energy front, which is helpful to induce the generation of the meso β-scale convective system.In addition, the cloud top infrared brightness temperature(TBB)of the meso β-scale convective system that induces the heavy rain on July 10, 2004 in Beijing is at-45 ℃ or so, and the updraft airflow reaches the height of around 300 hPa, which means in this case the convection is only activating in the low level of the troposphere in contrast with the deep convective systems of meso β-scale convective system in the mid and lower reaches of Yangtze River and South China, which symbolize with infrared brightness temperature between-70 and-85 ℃, and the updraft airflow reaches the top of troposphere. Future research is needed on whether this conclusion is characteristic for popular convective heavy rain process in North China.
  • Fig. 1  The geopotential height of 500 hPa(unit:dagpm)(a)and wind field of 850 hPa(b)at 14:00 on July 10, 2004(solid thicken line is for the rough, dashed line is for the shear)

    Fig. 2  The infrared brig htness temperature during 13:00—20:00 on July 10, 2004

    (unit:℃; shaded areas denote infrared brightness temperature below-32°)

    Fig. 3  The precipition from 08:00 on July 10 to 08:00 on July 11 in 2004(unit:mm) (a)observation,(b)simulation

    Fig. 4  The stream field at 17:00 on July 10, 2004

    (a)700 hPa,(b)850 hPa

    Fig. 5  Meridion-height cross section of relative vorticity(unit:10-5s-1)(a), horizontal divergence(unit:10-5s-1)(b)along 39.75°N, zone-height cross section of vertical velocity(unit:m/ s)(c), vertical circulation composed by meridional wind and vertical velocity amplified by 100 times(d)along 116. 25°E

    Fig. 6  Meridion-height cross section of θse along 116.25°E at 08:00 on July 10, 2004(unit:℃)

    Fig. 7  The hourly surface temperature(unit:℃)and stream field from 14:00 to 18:00 on July 10, 2004 from intensified observations(a)14:00, temperature,(b)14:00, stream field,(c)16:00, temperature, (d)16:00, stream field,(e)18:00, temperature,(f)18:00, stream field

    Fig. 8  T he divergence of water flux integrated from bottom to 400 hPa during 14:00—18:00(unit:106g·cm-2·hPa-1·s-1)(a), the sea level pressure(solid line, unit:hPa)and the temperature at 14:00(dashed line, unit:℃)(b)on July 10, 2004

  • [1]
    Maddox R A.Meso-scale convective complex.Bull Amer Meteor Sci, 1980, 61:1374-1387. doi:  10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [2]
    马禹, 王旭, 陶祖钰.中国及其临近地区中尺度对流系统的普查和时空分布特征.自然科学进展, 1997, 7:701-706. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ199706009.htm
    [3]
    Fang Zongyi.The preliminary study of medium-scale cloud clusters over the Changjiang basin in summer.Adv Atmos Sci, 1985, 2(3):334-340. doi:  10.1007/BF02677249
    [4]
    李玉兰, 王倩熔, 郑新江, 等.我国西南、华南地区中尺度对流复合体(MCC)的研究.大气科学, 1989, 13(4):417-422. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198904004.htm
    [5]
    项续康, 江吉喜.我国南方地区的中尺度对流复合体.应用气象学报, 1995, 6(1):9-17. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950102&flag=1
    [6]
    石定朴, 朱文琴, 王洪庆, 等.中尺度对流系统红外云图云顶黑体温度的分析.气象学报, 1996, 54(5):600-611. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB605.008.htm
    [7]
    吕艳彬, 郑永光, 李亚萍, 等.华北平原中尺度对流复合体发生的环境和条件.应用气象学报, 2002, 13(4):406-412. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020455&flag=1
    [8]
    卓鸿, 姚秀萍, 郑永光, 等.黄河下游春季一次中α对流系统暴雨过程的综合分析.气象学报, 2004, 62(4):504-511. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200404013.htm
    [9]
    方宗义, 项续康, 方翔, 等.2003年7月3日梅雨锋切变线上的β-中尺度暴雨云团分析.应用气象学报, 2005, 16(5):569-575. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050573&flag=1
    [10]
    覃丹宇, 江吉喜, 方宗义, 等.MCC和一般暴雨云团发生发展的物理条件差异.应用气象学报, 2004, 15(5):590-600. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040572&flag=1
    [11]
    张小玲, 陶诗言, 张顺利.1996年7月洞庭湖流域持续性暴雨过程分析.应用气象学报, 2004, 15(1):21-31. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040103&flag=1
    [12]
    王建捷, 李泽椿.1998年一次梅雨锋暴雨中尺度对流系统的模拟与诊断分析.气象学报, 2002, 60(2):146-155. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200202002.htm
    [13]
    王智, 翟国庆, 高坤.长江中游一次β中尺度低涡的数值模拟.气象学报, 2003, 61(1):66-77. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200311004.htm
    [14]
    孙建华, 张小玲, 齐琳琳, 等.2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究.大气科学, 2004, 28(5):675-691. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200405002.htm
    [15]
    蒙伟光, 王安宇, 李江南, 等.华南前汛期一次暴雨过程中的中尺度对流系统.中山大学学报, 2003, 42(3):72-77. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200303018.htm
    [16]
    张庆红, 刘启汉, 王洪庆, 等.华南梅雨锋上中尺度对流系统的数值模拟.科学通报, 2000, 45(18):1988-1992. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200018016.htm
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (3404) PDF downloads(1887) Cited by()
    • Received : 2006-03-20
    • Accepted : 2007-03-12
    • Published : 2007-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint