Shi Xiaoying, Shi Xiaohui. Climatological characteristics of summertime moisture budget over the southeast part of Tibetan Plateau with their impacts. J Appl Meteor Sci, 2008, 19(1): 41-46.
Citation: Shi Xiaoying, Shi Xiaohui. Climatological characteristics of summertime moisture budget over the southeast part of Tibetan Plateau with their impacts. J Appl Meteor Sci, 2008, 19(1): 41-46.

Climatological Characteristics of Summertime Moisture Budget over the Southeast Part of Tibetan Plateau with Their Impacts

  • Received Date: 2007-02-09
  • Rev Recd Date: 2007-08-02
  • Publish Date: 2008-02-29
  • Climatological characteristics of water vapor budget over the southeast part of Tibetan Plateau and their impacts on ambient areas in summer are investigated based on NCEP/NCAR reanalysis data for the period from 1961 to 2005. The result shows that the southeast part of Tibetan Plateau is a moisture sink, under the seasonal average of summer condition, the water vapor net budget is 39.9×106 kg/s. The establishment and advance of Asian summer monsoon play an important role in the incoming water vapor of the southeast part of Tibetan Plateau, and the outgoing moisture is closely associated with the advance and retreat of rain belt of East China. The southeast part of Tibetan Plateau, as the moisture transport channel to the east of Northwest China and mid-lower reaches of the Yangtze River, plays a great role in the moisture budget around it. The southeast part of Tibetan Plateau, as a transferring station, is one of the key factors to the flooding anom alies of precipitation in mid-lower reaches of the Yangtze River and the drought anomalies in North China. By power spectrum analysis, it is found that there is quasi-biennial oscillation in the interannual variations of moisture budgets at east/north boundary over the southeast part of Tibetan Plateau and summer precipitation of mid-lower reaches of the Yang tze River/eastern part of Northwest China. An in-phase inter-annual variation are shown by the moisture budgets at east boundary over the southeast part of Tibetan Plateau and the summer precipitation of mid-lower reaches of the Yangtze River, and the same to moisture budgets at north boundary and the summer precipitation of eastern part of Northwest China.It shows that the quasi-biennial oscillation of moisture budgets at east boundary is closely association with that of precipitation in mid-lower reaches of the Yangtze River, and the quasi-biennial oscillation of moisture budgets at north boundary is closely association with that of precipitation of the eastern part of Northwest China.
  • Fig. 1  Schematic diagram of the southeast part of Tibetan Plateau, mid-lower reaches of the Yangtze River and the eastern part of Northwest China

    Fig. 2  Duration curves of climatological mean water vapor budget over the southeast part of Tibetan Plateau from April to August

    Fig. 3  Difference of composed 500 hPa winds for flooding years from those for drought years of the mid-lower reaches of the Yangtze River (unit:m/s)

    Fig. 4  Correlation fields of moisture budget at east (a) and north (b) boundary over the southeast part of Tibetan Plateau with precipitation of China in summer

    (negative/positive correlations over 90% level are lightly/heavily shaded, respectively)

    Fig. 5  Power spectrum of moisture budget at east (a) and north (b) boundary over southeast part of Tibetan Plateau in summer

    (dashed line denotes the standard spectrum of white noise at α=0.05)

    Table  1  Budgets of four boundaries and the corresponding regional total budgets over the southeast part of Tibetan Plateau, mid-lower reaches of Yangtze River and the eastern part of Northwest China (unit:106 kg·s-1)

  • [1]
    陶诗言, 伊兰. 青藏高原在亚洲季风区水分循环中的作用∥第二次青藏高原大气科学试验理论研究进展. 北京: 气象出版社. 1999, 204-214.
    [2]
    Xu Xiangde, Miao Qiuju, Wang Jizhi, et al. Transport model at the regional boundary during the Meiyu period. Adv Atmos Sci, 2003, 20 : 333-342. doi:  10.1007/BF02690791
    [3]
    徐祥德, 陶诗言, 王继志, 等.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系.气象学报, 2002, 60(3):258-264. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200203000.htm
    [4]
    徐祥德, 陈联寿, 王秀荣, 等.长江流域梅雨带水汽输送源-汇结构.科学通报, 2003, 48(21):2288-2294. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200321016.htm
    [5]
    苗秋菊, 徐祥德, 张胜军.长江流域水汽收支与高原水汽输送分量“转换”特征.气象学报, 2005, 63(1):93-99. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501010.htm
    [6]
    任宏利, 张培群, 李维京, 等.中国西北东部地区春季降水及其水汽输送特征.气象学报, 2004, 62(3):365-373. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200403011.htm
    [7]
    马岚, 许熙, 高云.1997, 1998年长江上游地区水汽输送及其与径流量之间关系的对比分析.应用气象学报, 2000, 11(4):491-498. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000471&flag=1
    [8]
    丁一汇, 胡国权.1998年中国大洪水时期的水汽收支研究.气象学报, 2003, 61(2):129-145. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200302000.htm
    [9]
    胡国权, 丁一汇.1991年江淮暴雨时期的能量和水汽循环研究.气象学报, 2003, 61(2):146-163. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200302001.htm
    [10]
    周玉淑, 高守亭, 邓国.江淮流域2003年强梅雨期的水汽输送特征分析.大气科学, 2005, 29(5):195-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200502003.htm
    [11]
    谢安, 毛江玉, 宋焱云, 等.长江中下游地区水汽输送的气候特征.应用气象学报, 2002, 13(1):67-77. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020108&flag=1
    [12]
    Mcoley D A, Parthasarathy B. Fluctuation in all-India summer monsoon rainfall during 1871-1978. Climate Change, 1984, 6 : 287-301. doi:  10.1007/BF00142477
    [13]
    Meehl G. The annual cycle and interannual variability in the tropical Paeifie and Indian Ocean region. Mon Wea Rev, 1987, 115:27-50. doi:  10.1175/1520-0493(1987)115<0027:TACAIV>2.0.CO;2
    [14]
    Yasunari T, Suppiah R. Some Problems on the Interannual Variability of Indonesian Monsoon Rainfall//Theon J S, Fugono Deepak N, Hampton Va. Tropical Rainfall Measurements. 1988, 113-122.
    [15]
    Kiladis G N, Van Loon H. The Southern Oscillation. Part Ⅶ: Meteorological anomalies over the Indian and Pacific sectors associated with the extrmmes of the oscillation. Mon Wea Rev, 1988, 116:120-136. doi:  10.1175/1520-0493(1988)116<0120:TSOPVM>2.0.CO;2
    [16]
    Yasunari T. Impact of Indian monsoon on the coupled atmosphere/ocean system in the tropical Pacific. Meteor Atmos Phys, 1990, 44: 29-41. doi:  10.1007/BF01026809
    [17]
    Ropelewski C F, Halpert M S, Wang X. Observed tropospherical biennial variability and its relationship to the Southern Oscillation. J Climate, 1992, 5: 594-614. doi:  10.1175/1520-0442(1992)005<0594:OTBVAI>2.0.CO;2
    [18]
    Miao J H, Lau K-M. Interannual variability of East Asian monsoon rainfall. Quart J Appl Meteor, 1990, 1:377-382.
    [19]
    Tian S F, Yasunari T. Time and space structure of interannual variations in summer rainfall over China. J Meteor Soc Japan, 1992, 70:585-596.
    [20]
    殷宝玉, 王莲英, 黄荣辉. 东亚夏季风降水的准两年振荡及其可能的物理机制//黄荣辉. 灾害性气候的过程及诊断文集. 北京: 气象出版社, 1996. 96-205.
    [21]
    Chang C P, Zhang Y S, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Ⅰ, Ⅱ. J Climate, 2000, 13:4310-4340. doi:  10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2
    [22]
    黄荣辉, 陈际龙, 黄刚, 等.中国东部夏季降水的准两年周期振荡及其成因.大气科学, 2006, 30(4):545-560. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604000.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (4334) PDF downloads(2074) Cited by()
    • Received : 2007-02-09
    • Accepted : 2007-08-02
    • Published : 2008-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint