Fei Zengping, Zheng Yongguang, Zhang Yan, et al. MCS census and modification of MCS definition based on geostationary satellite infrared imagery. J Appl Meteor Sci, 2008, 19(1): 82-90.
Citation: Fei Zengping, Zheng Yongguang, Zhang Yan, et al. MCS census and modification of MCS definition based on geostationary satellite infrared imagery. J Appl Meteor Sci, 2008, 19(1): 82-90.

MCS Census and Modification of MCS Definition Based on Geostationary Satellite Infrared Imagery

  • Received Date: 2007-01-11
  • Rev Recd Date: 2007-07-03
  • Publish Date: 2008-02-29
  • MCSs (mesoscale convective systems) are significant weather systems causing heavy rain and other severe weather events during the warm season, which are very difficult to forecast in operation. Geostationary satellite infrared imagery with higher spatial and temporal resolution can provide much available information for MCS surveillance and forecasting. Since Maddox defined the MCCs (mesoscale convective complexes) based on enhanced satellite IR imagery, there are many detailed studies on the MCSs, but these studies revealed that Maddox's MCC definition is too strict. Then the MCS definition based on satellite imagery is always modified. In recent years, some studies classified MCS to MαCS (meso-α convective system) and MβCS (meso-β convective system). But because the definition of MCS based on satellite imagery is not uniform, it is very hard to compare various results of MCS census. First, the progress of MCS census research is reviewed, and the smallest horizontal scale of MβCS (meso-β convective system) is modified as that the diameter of cold cloud continuous area of TBB value≤-32 ℃ is more than 20 km. Secondly, based on the new definition of MβCS, the mesoscale convective systems are investigated over the Huaihe River Basin utilizing GOES-9 satellite IR imagery during June 21—July 22 2003, the results reveal that there are 10 MαCSs and 24 MβCSs. Comparing the definition of MβCS with that in the study of Ma et al, there are 7 MβCSs which can not satisfy the MβCS definition of Ma et al, and 6 of them lead to heavy rain over Huaihe River Basin. It shows that the new MβCS definition can better reveal the relationship between heavy rain and MCSs over the Huaihe River Basion. Finally, the other three typical MβCSs which produced heavy rainfall over Beijing are analyzed, Shalan Town of Heilongjiang Province, and Shanghai. The diameter of these three MβCSs is about 20—150 km, so they satisfy the new MβCS definition, but do not satisfy the MβCS definition of Ma et al. The results reveal that the new MβCS definition is very helpful to investigate and forecast the MCSs producing severe weather events in China.
  • Fig. 1  24-hour precipitation at 08:00 on July 6, 2003

    (unit:mm; the black thick line with arrow head is 17# MβCS path)

    Fig. 2  The precipitation over Beijing during 14:00—20:00 on July 10, 2004

    (unit:mm)

    Fig. 3  GOES-9 IR TBB distribution at 14:00 on July 10, 2004

    (unit:℃)

    Fig. 4  FY-2C IR TBB distribution at 11:00—14:00 on June 10, 2005

    (the black triangle denotes Ning'an City, unit:℃)

    Fig. 5  GOES-9 IR TBB distribution at 15:25—18:49 on July 12, 2004

    (unit:℃)

    Table  1  Maddox's definition of MCC[2]

    Table  2  The first modified MCC definition[10]

    Table  3  The second modified MCC definition[7]

    Table  4  The definition of MαCS and MβCS in studies of Ma et al[8] and Tao et al[17]

    Table  5  Modified MαCS def inition[18]

    Table  6  Modified definitions of MαCS and MβCS[19]

    Table  7  MCS occurrences during the period of flooding over Huaihe River Basin in 2003

  • [1]
    Orlanski L A.A rational subdivision of scales for atmospheric processes.Bull Amer Meteor Soc, 1975, 56 (5):527-530. http://www.geomorphometry.org/content/rational-subdivision-scales-atmospheric-processes
    [2]
    Maddox R A.Mesoscale convective complexes.Bull Amer Meteor Soc, 1980, 61 (11):1374-1387. doi:  10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [3]
    Shibagaki Y, Yabanaka MD, Shimizu S, et al.Meso-β to meso-γ-scale wind circulations associated with precipitating clouds near Baiu front observed by the MU and meteorological radars.J Meteor Soc Japan, 2000, 78 (1):69-91. https://www.jstage.jst.go.jp/article/jmsj1965/78/1/78_1_69/_article
    [4]
    江吉喜, 项续康, 范梅珠.青藏高原夏季中尺度强对流系统的时空分布.应用气象学报, 1996, 7 (4):474-478. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960472&flag=1
    [5]
    何立富, 陈涛, 谌芸, 等.大气探测资料在中尺度暴雨中的分析和应用.应用气象学报, 2006, 17 (增刊):88-97. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1012.htm
    [6]
    国家气象中心, 国家卫星气象中心.'98中国大洪水与天气预报.北京:气象出版社, 1999.
    [7]
    Anderson C J, Arritt R W.Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993.Mon Wea Rev, 1998, 126 (3):578-599. doi:  10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2
    [8]
    马禹, 王旭, 陶祖钰.中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展, 1997, 7 (6):701-706. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ199706009.htm
    [9]
    Zheng Yongguang, Tao Zuyu, Wang Hongqing, et al.Enviroment of meso-α-scale convective system development in Yellow Sea region.Progress in Natural Science, 1999, 9 (7):842-848. https://www.researchgate.net/publication/292383167_Environment_of_meso-a-scale_convective_system_development_in_Yellow_Sea_region
    [10]
    Augustine J A, Howard K W.Mesoscale convective complexes over the United States during 1986 and 1987.Mon Wea Rev, 1991, 119 (7):1575-1589. doi:  10.1175/1520-0493(1991)119<1575:MCCOTU>2.0.CO;2
    [11]
    Cotton W R, Lin M S, McAnelly R L, et al.A composite model of mesoscale convective complexes.Mon Wea Rev, 1989, 117 (4):765-783. doi:  10.1175/1520-0493(1989)117<0765:ACMOMC>2.0.CO;2
    [12]
    Velasco L, Fritsch J M.Mesoscale convective complexes in Americas.J Geophys Res, 1987, 192 (D8):9591-9613. doi:  10.1029/JD092iD08p09591/abstract
    [13]
    Miller D, Fritsch J M.Mesoscale convective complexes in the western Pacific region.Mon Wea Rev, 1991, 119 (12):2978-2992. doi:  10.1175/1520-0493(1991)119<2978:MCCITW>2.0.CO;2
    [14]
    Laing A, Fritsch J M.Mesoscale convective complexes in Africa.Mon Wea Rev, 1993, 121 (8):2254-2263. doi:  10.1175/1520-0493(1993)121<2254:MCCIA>2.0.CO;2
    [15]
    李玉兰, 王倩熔, 郑新江, 等.我国西南-华南地区中尺度对流复合体 (MCC) 的研究.大气科学, 1989, 13 (4):417-422. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198904004.htm
    [16]
    项续康, 江吉喜.我国南方地区的中尺度对流复合体.应用气象学报, 1995, 6 (1):1-17. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950102&flag=1
    [17]
    陶祖钰, 王洪庆, 王旭, 等.1995年中国的中-α尺度对流系统.气象学报, 1998, 56 (2), 166-177. http://www.cmsjournal.net/qxxb_cn/ch/reader/view_abstract.aspx?file_no=19980204&flag=1
    [18]
    郑永光, 朱佩君, 陈敏, 等.1993—1996黄海及其周边地区MαCS的普查分析.北京大学学报 (自然科学版), 2004, 40 (1):66-72. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200401009.htm
    [19]
    费增坪, 郑永光, 王洪庆.2003年淮河大水期间MCS的普查分析.气象, 2005, 31 (13):18-22. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200512003.htm
    [20]
    谢静芳, 王晓明.东北地区中尺度对流复合体的卫星云图特征.气象, 1995, 21 (5):41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX505.008.htm
    [21]
    杨本相, 陶祖钰.青藏高原东南部MCC的地域特点分析.气象学报, 2005, 63 (2):236-242. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200502010.htm
    [22]
    马禹, 王旭, 陶祖钰.新疆特大暴雨过程中的中尺度对流系统特征.新疆气象, 1998, 21(6):3-7. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX199806001.htm
    [23]
    段旭, 张秀年, 许美玲.云南及其周边地区中尺度对流系统时空分布特征.气象学报, 2004, 26 (2):243-249. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200402011.htm
    [24]
    Jirak I L, Cotton W R, Mcanelly R L.Satellite and radar survey of mesoscale convective system development.Mon Wea Rev, 2003, 131 (10):2428-2449. doi:  10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2
    [25]
    郑永光, 陈炯, 陈明轩, 等.北京及周边地区5—8月红外云图亮温的统计学特征及其天气学意义.科学通报, 2007, 52 (14):1700-1706. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200714019.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(7)

    Article views (3924) PDF downloads(1391) Cited by()
    • Received : 2007-01-11
    • Accepted : 2007-07-03
    • Published : 2008-02-29

    /

    DownLoad:  Full-Size Img  PowerPoint