Yang Lianmei, Zhang Qingyun. Interannual variation of summer precipitation in Xinjiang and Asian subtropical westerly jet stream. J Appl Meteor Sci, 2008, 19(2): 171-179.
Citation: Yang Lianmei, Zhang Qingyun. Interannual variation of summer precipitation in Xinjiang and Asian subtropical westerly jet stream. J Appl Meteor Sci, 2008, 19(2): 171-179.

Interannual Variation of Summer Precipitation in Xinjiang and Asian Subtropical Westerly Jet Stream

  • Received Date: 2006-10-25
  • Rev Recd Date: 2007-07-10
  • Publish Date: 2008-04-30
  • The relationships between Asian subtropical westerly jet stream (ASWJS) and summer precipitation in Xinjiang are examined using the NCEP/NCAR reanalysis dataset and 75 stations monthly precipitation data in Xinjiang from 1960 to 2003. Summer precipitation in Xinjiang is closely related to meridional displacement of west Asian jet stream and quasi-stationary wave activity along ASWJS. It is confirmed by Eliasson-Palm flux diagnoses that stationary waves propagation over Scandinavian Peninsulan-middle Europe has important impacts on stationary waves activity along ASWJS. It is found that anomalous summer more (less) rainfall in Xinjiang is related to the West Asian Westerly Jet axis moving to Southern (Northern) rather than normal, and subtropical westerly front also migrates southward (northward) over the whole troposphere. As a result, anomalous convergence and divergence occur over Xinjiang. The composite plots show the troposphere atmospheric steady wave weakens or strengthens over West Asia and strengthens or weakens over Xinjiang which are associated with more or less rainfall in Xinjiang. It is investigated that the horizontal wave vector propagation is obviously different between more and less rainfall years. During more (less) rainfall years, it is found that horizontal wave activity flux divergence center over Scandinavian Peninsula-middle Europe is favorable for moving eastward (westward and southward), and horizontal wave activity propagation strengthens (weakens) toward eastward leading to turning to southeastward near Ural mountain and entering ASWJS at Aral Sea-Xinjiang and the wave propagation strengthens (weakens). In the meantime, the direct wave propagation toward southeastward enters ASWJS in the east Mediterranean and Black Sea and weakens (strengthens) because of which quasi-stationary wave activity along West Asian westerly jet stream weakens (strengthens). Xinjiang summer rainfall is closely related to wave activity and propagation over Scandinavian Peninsula-middle Europe-ASWJS. Furthermore, the meridional wave train along 60°E connecting the two hemispheres is revealed, and this wave train which propagates meridionally upward from lower-troposphere in polar region to low-latitude tropopause and continues turning downward to mid-latitude in northern hemisphere is associated with west Asian jet variation. This wave train EP flux divergence performs opposite the variation near the south and north along 40°N, leading to different west Asian westerly jet stream intense variation near the south and north along 40°N for drought/flood years. EP flux divergence to the south (north) of 40°N and convergence to the north (south) of 40°N enhances (weakens) in flood (drought) years leading to the enhanced (weakened) upper level westerly to the south of 40°N and weakens (enhances) upper level westerly to the north of 40°N.
  • Fig. 1  The patterns of the eigenvectors of the first two gravest EOF modes (a, b) and corresponding time series (c, d) of 75 stations normalized rainfall over Xinjiang in summer

    Fig. 2  Zonal winds at 200 hPa in summer (unit:m·s-1)(a) climate mean, (b) in more rainfall years, (c) in less rainfall years

    Fig. 3  Linear correlation between first mode of Xinjiang summer rainfall EOF and zonal winds in summer

    (shaded areas indicate the level exceeding 0.05)

    Fig. 4  Same as in Fig.2, but for meridional winds

    (shaded areas indicate the level exceeding 0.05)

    Fig. 5  Same as in Fig. 3, but for meridional winds

    Fig. 6  Meridion-height cross section averaged over 70°—100°E of divergence in summer (unit:10-6s-1; shaded areas indicate topography)(a) climate mean, (b) anomaly in more rainfall years, (c) anomally in less rainfall years

    Fig. 7  The horizontal wave activity flux (vectors, unit:m2·s-2) and its divergence (contours, unit:10-6m·s-2) at 200 hPa in summer (a) climeate mean, (b) in more rainfall years, (c) in less rainfall years

    Fig. 8  Cross section of EP flux divergence (unit:10 -6m·s -2, shadings indicate topography) along 60°E (a) climate mean, (b) anomaly in more rainfall years, (c) anomaly in less rainfall years

  • [1]
    张存杰, 谢金南, 李栋梁.东亚季风对西北地区干旱气候的影响.高原气象, 2002, 21(2):193-198. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200202011.htm
    [2]
    王宝鉴, 黄玉霞, 何金海, 等.东亚夏季风期间水汽输送与西北干旱的关系.高原气象, 2004, 23(6):912-918. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200406026.htm
    [3]
    张家宝, 苏起元, 孙沈清, 等.新疆短期天气预报指导手册.乌鲁木齐:新疆人民出版社, 1986:457.
    [4]
    叶笃正, 陶诗言, 李麦村.在六月和十月大气环流的突变现象.气象学报, 1958, 29(4):249-263. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195804004.htm
    [5]
    陶诗言, 赵煜佳, 陈小敏.东亚的梅雨与亚洲上空大气环流季节变化的关系.气象学报, 1958, 29(2):119-134. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB195802006.htm
    [6]
    孙安健.江淮旱涝年份准定常行星波分布于平均纬向风速的差异.应用气象学报, 1994, 5(1):68-76. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940112&flag=1
    [7]
    Liang P D, Liu A X. Winter Asia jet stream and seasonal precipitation in East China. Adv Atmos Sci, 1994, 11(3):311-318. doi:  10.1007/BF02658150
    [8]
    Liang X Z, Wang W C. Association between China monsoon rainfall and tropospheric jets. Quart J Roy Meteor Soc, 1998, 124 (6): 2597-2623. https://www.researchgate.net/publication/229508689_Association_between_China_monsoon_rainfall_and_tropospheric_jets
    [9]
    李崇银, 王作台, 林士哲, 等.东亚夏季风活动与东亚高空西风急流位置北跳关系的研究.大气科学, 2004, 28(5):641-658. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200405000.htm
    [10]
    廖清海, 高守亭, 王会军, 等.北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响.地球物理学报, 2004, 47(1):10-18. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200401002.htm
    [11]
    Lu R Y. Associations among the components of the East Asian summer monsoon system in the meridional direction. J Meteor Soc Japan, 2004, 82(1):155-165. doi:  10.2151/jmsj.82.155
    [12]
    庄世宇, 赵声蓉, 姚明明.1998年夏季西太平洋副热带高压的变异分析.应用气象学报, 2005, 16(2):54-65. http://qikan.camscma.cn/jams/ch/reader/key_query.aspx
    [13]
    陶诗言, 卫捷.再论夏季西太平洋副热带高压的西伸北跳.应用气象学报, 2006, 17(5):513-525. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060591&flag=1
    [14]
    毛睿, 龚道溢, 房巧敏.冬季东亚中纬度西风急流对我国气候的影响.应用气象学报, 2007, 18(2):11-20. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070226&flag=1
    [15]
    Terao T. Barotropic disturbances on intraseasonal time scales observed in the midlatitudes over the Eurasian continent during the northern summer. J Meteor Soc Japan, 1998, 76:419-436. https://www.researchgate.net/publication/294217661_Barotropic_disturbances_on_intraseasonal_time_scales_observed_in_the_midlatitudes_over_the_Eurasian_continent_during_the_northern_summer
    [16]
    Krishnan R, Sugi M. Baiu rainfall variability and associated monsoon teleconnections. J Meteor Soc Japan, 2001, 79:851-860. doi:  10.2151/jmsj.79.851
    [17]
    Enomoto Takeshi, Hoskins B J, Matsuda Yoshihisa. The formation mechanism of the Bonin high in August. Quart J Roy Meteor Soc, 2003, 587:157-178. doi:  10.1256/qj.01.211/full
    [18]
    Enomoto Takeshi. Interannual variability of the Bonin High associated with the propagation of Rossby waves along the Asian jet. J Meteor Soc Japan, 2004, 82:1019-1034. doi:  10.2151/jmsj.2004.1019
    [19]
    Lu R Y, Oh J H, Kim B J. A teleconnection pattern in upperlevel meridional wind over the North African and Eurasian continent in summer. Tellus, 2002, 54A:44-55. https://www.researchgate.net/publication/229672949_A_teleconnection_pattern_in_upper-level_meridional_wind_over_the_North_African_and_Eurasian_continent_in_summer
    [20]
    Ding Q H, Wang B. Circumglobal teleconnection in the Northern Hemisphere summer. J Climate, 2005, 18:3483-35050. doi:  10.1175/JCLI3473.1
    [21]
    Takaya Koutarou, Nakamura Hisashi. A formulation of a waveactivity flux for stationary Rossby waves on a zonally varying basic flow. Geophys Res Lett, 1997, 24:2985-2988. doi:  10.1029/97GL03094
    [22]
    段安民, 吴国雄, 刘屹岷.定常条件下感热和地形影响的Rossby波.气象学报, 2006, 62(2):129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200602000.htm
    [23]
    刘忠辉, 喻世华.夏季对流层高层的低频波导.热带气象学报, 1993, 9(2):142-149. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199302005.htm
    [24]
    姚文清, 徐祥德, 冉令坤.江淮流域旱涝年夏季E-P通量特征分析.气象, 2004, 30(4):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200404002.htm
    [25]
    苗秋菊, 徐祥德, 姚文清.高层大气三维热力结构异常及其遥相关特征对江淮流域旱涝的影响.气象学报, 2003, 61(4): 457-465. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200304006.htm
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (4106) PDF downloads(1824) Cited by()
    • Received : 2006-10-25
    • Accepted : 2007-07-10
    • Published : 2008-04-30

    /

    DownLoad:  Full-Size Img  PowerPoint