Yang Zhifeng, Zhang Xiaoye, Che Huizheng, et al. An introductory study on the calibration of CE318 sunphotometer. J Appl Meteor Sci, 2008, 19(3): 297-306.
Citation: Yang Zhifeng, Zhang Xiaoye, Che Huizheng, et al. An introductory study on the calibration of CE318 sunphotometer. J Appl Meteor Sci, 2008, 19(3): 297-306.

An Introductory Study on the Calibration of CE318 Sunphotometer

  • Received Date: 2007-09-12
  • Rev Recd Date: 2008-01-31
  • Publish Date: 2008-06-30
  • The indoor and field calibration methods of CE318 sunphotometer are mainly explored and the calibration results of the two methods are compared. Based on integrating sphere radiation calibration method, an experiment is carried out for the calibration of the sky scattering radiation channels at eight different wave bands of CE318 sunphotometer. Langley calibration method and standard instrument relative calibration method are used to calibrate sun direct radiation channels at different wave bands of CE318 sunphotometer. The results of this experiment show that the calibration results of sky scattering radiation channels at 670 nm, 870 nm, 1020 nm and the original calibration of the same instrument are fundamentally equal with the discrepancy less than 6%. It has high reliability. Unfortunately the result of the wave band of 440 nm is higher than the original calibration, and the departure range is about 18.9%. Based on the calibration results, it can be concluded that there are good feasibility and reliability in using integrating sphere for calibrating the sky scattering radiation channels. However, there is a little difference between the calibration results and theoriginal calibration. Considering the fact that aging filters might be led to by using conditions and measurement for long periods outdoors, some aerosol particles may fall on the filters which are inside the sensor head, even because the filters run very long time, so the filters are made broken. Generally speaking, the calibration results of the sun direct radiation channels are slightly larger than theoriginal calibration. The results show that the filters of some channels are aging, so it is necessary to replace them to ensure observation precision. In addition, the comparisons between the Langley method and standard instrument relative calibration method are made. It shows from the comparison results that good weather conditions on the day of calibration are required by the Langley method, which include clear sky, cloud-free and stable atmosphere, and very accurate standard instrument is required by the standard instrument relative calibration method. Because the standard instrument relative calibration method is more advantageous than the Langley method from the comparing results, the standard instrument relative calibration method is employed by the present study to calibrate the CE318 sunphotometer in the CARSNET (China Aerosol Robot Sunphotometer NETwork) of China Meteorological Administration to guarantee the precision of the observation data.
  • Fig. 1  Comparisons of calibration coefficients of the sky scattering radiation channels of the calibrated sunphotometer between the calibration and original calibration

    Fig. 2  Ratios of calibration coefficients of the sky scattering radiation channels of the calibrated sunphotometer between the calibration and original calibration

    Fig. 3  Aerosol optical depth at Lingshan observation station on April 8, 2007

    Fig. 4  Comparisons of calibration coefficients of the sun direct radiation channels of the calibrated sunphotometer between the two calibrations and original one

    Fig. 5  Ratios of calibration coefficients of the sun direct radiation channels of the calibrated sunphotometer between the two calibrations and original one

    Table  1  Spectrum channels of CE318 sunphotometer

    Table  2  Calibration coefficients of integrating sphere

    Table  3  Comparisons of calibration coefficients of the sky scattering radiation channels of the calibrated sunphotometer between this calibration and original calibration

    Table  4  Comparisons of calibration coefficients of the sun direct radiation channels of the calibrated sunphotometer between the calibration and original one

  • [1]
    王明星.大气化学 (第二版).北京:气象出版社, 1999.
    [2]
    IPCC. Third Assessment Report, Climate Change 2001: The Scientific Basis. New York: Cambridge University Press, 2001.
    [3]
    Angstrom A. On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler, 1929, 11:156-166. doi:  10.2307/519399
    [4]
    Angstrom A. On the atmospheric transmission of sun radiation Ⅱ. Geografiska Annaler, 1930, 12:1301.
    [5]
    罗云峰, 李维亮. 20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析.气象学报, 2001, 59(1):77-87. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200101008.htm
    [6]
    罗云峰, 周秀骥.大气气溶胶辐射强迫及气候效应的研究现状.地球科学进展, 1998, 13(6): 572-581. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ806.008.htm
    [7]
    周秀骥.中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟.大气科学, 1998, 22(4):418-427. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.003.htm
    [8]
    邱金桓.从全波段太阳直射辐射确定大气气溶胶光学厚度, Ⅰ:理论.大气科学, 1995, 19(4): 385-394. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK504.000.htm
    [9]
    邱金桓, 林耀荣.关于中国大气气溶胶光学厚度的一个参数化模式.气象学报, 2001, 59(3):368-372. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200103012.htm
    [10]
    石广玉.大气辐射计算的吸收系数分布模式.大气科学, 1998, 22(4):659-676. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK804.024.htm
    [11]
    赵柏林, 张菲, 高国明.我国大气气溶胶光学厚度的特性.气象学报, 1986, 44(2):235-241. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198602014.htm
    [12]
    夏祥鳌, 王普才, 陈洪滨, 等.中国北方地区春季气溶胶光学特性地基遥感研究.遥感学报, 2005, 9(4): 429-437. http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200504013.htm
    [13]
    王跃思, 辛金元, 李占清, 等.中国地区大气气溶胶光学厚度与Angstrom参数联网观测 (2004-08—2004-12).环境科学, 2006, 27(9): 1703-1711. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200609001.htm
    [14]
    李成才, 毛节泰, 刘启汉, 等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征.科学通报, 2003, 48(19):2094-2100. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200319018.htm
    [15]
    毛节泰, 李成才. MODIS卫星遥感北京地区气溶胶光学厚度及与地面光度计遥感的对比.应用气象学报, 2002, 13(1): 127-135.
    [16]
    张军华, 斯召俊. GMS卫星遥感中国地区气溶胶光学厚度.大气科学, 2003, 27(1): 23-35.
    [17]
    Holben B N, Kaufman Y J, Eck T F, et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 1998, 66(1): 1-16. doi:  10.1016/S0034-4257(98)00031-5
    [18]
    WMO. Strategy for the Implementation of the Global Atmosphere Watch Programme (2001—2007). World Meteorological Organization, 2001, 142: 43-45.
    [19]
    Freeman tle J, O'Neill N, Royer A, et al. AEROCAN: The Canadian Sunphotometer Network. Remote Sensing of Atmospheric Aerosols, 2005: 32-35.
    [20]
    罗军, 易维宁, 何超兰, 等.利用野外光谱辐射计传递实现太阳辐射计绝对辐射定标.大气与环境光学学报, 2006, 1 (2): 112-116. http://www.cnki.com.cn/Article/CJFDTOTAL-GDJY200605008.htm
    [21]
    Biggar S F, Gellman D I, Slater N. Improved evaluation of optical depth components from langley plot data. Remote Sens Environ, 1990, 32: 91-101. doi:  10.1016/0034-4257(90)90010-J
    [22]
    胡秀清, 张玉香.中国遥感卫星辐射校正场气溶胶光学特性观测研究.应用气象学报, 2001, 12(3): 257-266. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010337&flag=1
    [23]
    张军华, 王美华.多波段光度计遥感气溶胶误差分析及订正.大气科学, 2000, 24(6): 855-859. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200006011.htm
    [24]
    Weihs P, Dirmhirn I, Czerw enka-Wenkstetten I M. Calibration of sunphotometer for measurements of turbidity. Theor Appl Climatol, 1995, 51(1): 97-104. doi:  10.1007/BF00865544?no-access=true
    [25]
    Shaw G E. Error analysis of multi-wavelength sun photometry. Pure Appl Geophys, 1976, 114(1): 1-14. doi:  10.1007/BF00875487
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (4484) PDF downloads(2897) Cited by()
    • Received : 2007-09-12
    • Accepted : 2008-01-31
    • Published : 2008-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint