Li Bo, Zhao Sixiong, Lu Hancheng, et al. Test of the synthetical multilevel analog forecast technology in short-term rainstorm prediction. J Appl Meteor Sci, 2008, 19(3): 307-314.
Citation: Li Bo, Zhao Sixiong, Lu Hancheng, et al. Test of the synthetical multilevel analog forecast technology in short-term rainstorm prediction. J Appl Meteor Sci, 2008, 19(3): 307-314.

Test of the Synthetical Multilevel Analog Forecast Technology in Short-term Rainstorm Prediction

  • Received Date: 2007-06-13
  • Rev Recd Date: 2008-01-18
  • Publish Date: 2008-06-30
  • A new synthetical multilevel analog forecast technology (SMAT) is developed to make the analog forecast trial of different pattern rainstorm process in a selected region, including cold front pattern, typhoon pattern, quasi-stationary front pattern, cyclonic pattern, inverted trough pattern etc. The new forecast system's research process, the study results and its application are introduced. "Synthetical" represents the combination of various meteorological elements, combination of large scale weather condition and meso-scale weather condition, combination of static simulation and dynamical process simulation. Multilevel indicates three level forecast flows by which different aspects are described and are embodied in a harmonious body. The basic element field is used to reflect macro-atmospheric circumstance (large scale) similitude, local physical elements are used to reflect local climate trait (meso-scale) similitude, numerical model integral products are used to reflect dynamical process similitude. "The reducing FAR (vacant-forecast rate) " technology and extremum check method are included in SMAT, which are useful in selecting analog terms and optimizing forecast conditions' combinations. Multi-meteorology terms and physical conditions' combination are also included in SMAT, which are useful in each analog level trail. This is a step forward than the former single element analog. The science problem analog criterion alters a lot with different analog elements and ranges and it is pointed out, the following method is used to resolve this problem. Analog degree in a more general view can be described by evaluating various good elements and their combination samples. The key analog range is selected from some possible ranges. In the 3rd level analog process, assimilation numeric products are imported. Moreover, based on double-times rolling forecast, losing-forecast events can be decreased. This is good to improve forecast capability in disastrous weather. The following conclusions can be drawn. The historical testing CSI (forecast successful index) of each pattern is more than 0.4 (some are even more than 0.6), model testing average CSI is 0.37, this is better than other work in the same field. Better indexes can be gotten in the 3rd level forecast than double levels forecast. The selection and operation way of critical analog deviation suggest the idea of "false alarm better than miss hit". This leads to the high false alarm index. The 3rd level forecast based on the model products can be used in reducing the false alarm index. After revising the model continuously, model average forecast ability can be improved. Comparing with other current forecast methods (CSI is about 0.35), a revised model testing average CSI (0.392) is obtained. SMAT is also good at COR (forecast precise rate) and POD (miss hit forecast rate) index. Results show that successful forecast in various rainstorm process is achieved. SMAT model has a stronger forecast capability.
  • Fig. 1  The whole procession press of analog forecast

    Fig. 2  The historical test indexes of rainstorm trial (the 1st and 2nd procession)

    Fig. 3  The indexes of rainstorm model test trial (the 1st and 2nd procession)

    Fig. 4  The indexes contrast between double forecast and thrice forecast (quasi-stationary front pattern)

    Fig. 5  The revising and adjusting effect (typhoon pattern)

    Fig. 6  The effect contrast of various forecast methods

    Table  1  The rainstorm distribution in the forecast range from April to September during 1990—2001

    Table  2  The trial and test informations of various pattern rainstorm

  • [1]
    Liu Yubao, Zhang Dalin, Yau M K. A multiscale numerical study of hurricane Andrew (1992). Part Ⅰ: Explicit simulation and verification. Mon Wea Rev, 1997, 12: 3073-3093. doi:  10.1175/1520-0493%281997%29125<3073%3AAMNSOH>2.0.CO%3B2
    [2]
    张曼, 王昂生, 季仲贞, 等.不同降水方案对"03.7"一次暴雨过程模拟的影响.大气科学, 2006, 30 (3) : 441-452. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200603007.htm
    [3]
    隆宵, 程麟生, 文莉娟. "02.6"梅雨期一次暴雨β中尺度系统结构和演化的数值模拟研究.大气科学, 2006, 30 (2) : 327-340. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2006&filename=DQXK200602014&v=MDA4NTdJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUZyQ1VSTDJmWk9SdEZ5cmxWTDdLSVR6VFpiRzRIdGZNclk5RVk=
    [4]
    倪允琪, 周秀骥, 张人禾, 等.我国南方暴雨的试验与研究.应用气象学报, 2006, 17 (6) : 690-704. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606118&flag=1
    [5]
    鲍名, 黄荣辉.近40年我国暴雨的年代际变化特征.大气科学, 2006, 30 (6) : 1057-1068. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606000.htm
    [6]
    陈红, 赵思雄.海峡两岸及邻近地区暴雨试验期间 (HUAMEX) 暴雨过程及环流特征研究.大气科学, 2004, 28 (1) : 32-47. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200401003.htm
    [7]
    张小玲, 陶诗言, 张顺利.梅雨锋上的三类暴雨.大气科学, 2004, 28 (2) : 187-205. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200402002.htm
    [8]
    孔玉寿, 章东华.现代天气预报技术.北京:气象出版社, 2000: 52-72.
    [9]
    盛飞.集成预报技术研究.南京:解放军理工大学大气科学系, 2003.
    [10]
    王莉, 黄嘉佑. Kalman滤波的试验应用研究.应用气象学报, 1999, 10 (3) : 276-283. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19990370&flag=1
    [11]
    晁淑懿, 金荣花.一种综合相似中期预报模型.应用气象学报, 1996, 7 (3) : 300-307. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960344&flag=1
    [12]
    金荣花, 李月安, 晁淑懿, 等.长江中下游旱涝中期预报方法及其业务应用.气象, 2004, 30 (12) : 47-52. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200412010.htm
    [13]
    邵明轩, 刘还珠, 窦以文.用非参数估计技术预报风的研究.应用气象学报, 2006, 17 (增刊) : 125-129. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2006&filename=YYQX2006S1017&v=MTMwNTVUcldNMUZyQ1VSTDJmWk9SdEZ5cm1WYjNMUERUYWRyRzRIdGV2cm85RVk0UjhlWDFMdXhZUzdEaDFUM3E=
    [14]
    张延亭, 单九生.逐步引进因子场作相似预报.气象, 2000, 26 (3) : 22-27. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200003004.htm
    [15]
    张丰启, 崔晶, 王仁胜.相似离度在入型判别和定时、定点、定量预报中的应用.气象, 2002, 28 (9) : 44-48. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200209010.htm
    [16]
    彭京备, 陈烈庭, 张庆云.多因子多尺度合成中国夏季降水预测模型及预报试验.大气科学, 2006, 30 (4) : 596-608. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604005.htm
    [17]
    刘小宁, 鞠晓慧, 范邵华.空间回归检验方法在气象资料质量检验中的应用.应用气象学报, 2006, 17 (1) : 37-44. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060106&flag=1
    [18]
    Anthes R A, Warner T T. Development of hydrodynamics models suitable for air polloution and mesometeorological studies. Mon Wea Rev, 1978, 106: 1045-1078. doi:  10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2
    [19]
    张立祥, 陈立强, 刘文明, 等.东北区夏季月降水数值产品释用预报方法.应用气象学报, 2000, 11 (3) : 348-355. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000351&flag=1
    [20]
    Cressman G P. An operational objective analysis system. Mon Wea Rev, 1959, 87: 367-374. doi:  10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
    [21]
    Jimy Dudhia, Dave Gill, Kevin Manning, et al. PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3.2005.
    [22]
    王跃山.客观分析和四维同化 (Ⅱ) 客观分析的主要方法.气象科技, 2001, 29 (1) : 1-9.
    [23]
    李建通, 杨维生, 郭林, 等.提高最优插值法测量区域降水量精度的探讨.大气科学, 2000, 24 (2) : 263-270. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200002013.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (3336) PDF downloads(1337) Cited by()
    • Received : 2007-06-13
    • Accepted : 2008-01-18
    • Published : 2008-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint