Chen Yuying, Liu Huanzhu, Chen Nan, et al. Application of KNN to wind forecast based on clustering synoptic patterns. J Appl Meteor Sci, 2008, 19(5): 564-572.
Citation: Chen Yuying, Liu Huanzhu, Chen Nan, et al. Application of KNN to wind forecast based on clustering synoptic patterns. J Appl Meteor Sci, 2008, 19(5): 564-572.

Application of KNN to Wind Forecast Based on Clustering Synoptic Patterns

  • Received Date: 2007-09-11
  • Rev Recd Date: 2008-07-28
  • Publish Date: 2008-10-31
  • Based on the model identification and an analogue forecasting, a new approach based on Self-Organizing feature Map (SOM) and cross validation is constructed, which is called K-nearest neighbor nonparametric estimation bootstrap model (KNN). 500 hPa geopotential height and 700 hPa u, v wind field over Northwest China are analyzed by the model clusterings at first, then the optimal K combination is sought using cross validation aiming at past samples under different weather patterns. Forecasting identification value of each synoptic pattern is determined by K-data, according to historical record. When forecasting in real time, what kind of synoptic pattern is to be known first, then K-data of different time is used to compute the nearest neighbor of real forecasting predictor to historical material predictor. Finally forecasting conclusion is obtained by using the standard of forecasting identification value. In order to validate the effect on cluster synoptic pattern to KNN, T213 NWP products from 2003 to 2006 in winter half year and the data of daily maximum velocity in Ningxia are used to construct prediction models of daily maximum velocity≥6 m/s pattern in Ningxia under synoptic and non-synoptic patterns at one time, data from Jan to May in 2007 is used for forecast experiments. The forecast evaluation results show that although the probability of original sample is reduced when adding the Self-Organizing feature Map of KNN, more false alarms in forecasting are avoided, so that the effect of forecasting is improved in general, especially the forecasting effects of some synoptic patterns compared with those that aren't patterned. The result is that the forecasting information of Ningxia high wind can be reflected by improved KNN. What's worth pointing out is that, the number of synoptic patterns is reduced when patterned, so the forecasting will be effected to some extent. It has a good effect for meteorological observing station which has more original samples, but it is not good for the ones that have less original samples. Therefore if there are more historical data which can reflect the wide range of system changing, the forecast accuracy will be improved significantly and it has a great value for operational usage. Classification analogue prediction thinking can be expanded by these results.
  • Fig. 1  Kohonen Self-Organizing feature Map structure[8]

    Fig. 2  Four weather patterns of SOM cluster analysis

    (black bold lines are contours at 700 hPa, unit:gpm; arrow lines are stream lines at 700 hPa)

    Fig. 3  TS (a), absent forecast quotiety (b), general probability (c) of 24-hour forecast for weather stations with daily maximum velocity≥6m/s from Jan to May in 2007 of Ningxia

    Fig. 4  TS (a), absent forecast quotiety (b), general probability (c) of 48-hour forecast for weather stations with daily maximum velocity≥6 m/s from Jan to May in 2007 of Ningxia

    Table  1  Average skills of 24-hour and 48-hour forecast of daily maximum velocity≥6 m/s from Jan to May in 2007 of Ningxia

  • [1]
    陈豫英, 陈晓光, 马金仁, 等.风的精细化MOS预报方法研究.气象科学, 2006, 26(2):210-216. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200602013.htm
    [2]
    刘还珠, 赵声蓉, 赵翠光, 等.国家气象中心气象要素的客观预报———MOS系统.应用气象学报, 2004, 1(2):181-191. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040223&flag=1
    [3]
    杨忠恩, 陈淑琴, 黄辉.舟山群岛冬半年灾害性大风的成因与预报.应用气象学报, 2007, 18(2):80-85. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070114&flag=1
    [4]
    林良勋, 程正泉, 张兵, 等.完全预报方法在广东冬半年海面强风业务预报中的应用.应用气象学报, 2004, 15(4):485-490. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040459&flag=1
    [5]
    胡波, 杜惠良.浙江省沿海海面日极大风预报.海洋预报, 2006, 23(增刊):64-67. http://www.cnki.com.cn/Article/CJFDTOTAL-HYYB2006S1009.htm
    [6]
    Cover T M, Hart P E. Nearest neighbor pattern classification. IEEE Trans on Inf Theory, 1967, IT-13:21-27. http://ieeexplore.ieee.org/document/1053964/
    [7]
    翟宇梅, 赵瑞星.概率天气预报的K近邻非参数估计仿真模型.系统仿真学报, 2005, 17(4):786-788. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200504004.htm
    [8]
    邵明轩, 刘还珠, 窦以文.用非参数估计技术预报风的研究.应用气象学报, 2006, 17(增刊):125-129. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1017.htm
    [9]
    曾晓青, 邵明轩, 王式功, 等.基于交叉验证技术的KNN方法在降水预报中的试验.应用气象学报, 2008, 19(4):471-478. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080411&flag=1
    [10]
    Kohonen T. Self-organizing Maps. Berlin:Springer-Verlag, 1998, 21: 1-6.
    [11]
    许文杰, 刘希玉.基于无监督神经网络聚类算法的研究.信息技术和信息化, 2006, (6):85-88. http://www.cnki.com.cn/Article/CJFDTOTAL-SDDZ200606039.htm
    [12]
    孙世霞, 杨建池, 邱晓刚, 等.基于BP网络的LSCS仿真可信性评估方法.系统仿真学报, 2006, 18(7):2037-2041. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200607075.htm
    [13]
    王青, 祝世虎, 董朝阳.自学习智能决策支持系统.系统仿真学报, 2006, 18(4):924-926. http://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ200604029.htm
    [14]
    夏文文, 王士同.基于Voronoi距离的鲁棒的双自组织特征映射网络.计算机应用, 2007, 27(5):1109-1112. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJY200705024.htm
    [15]
    刘还珠, 郝为, 林孔元, 等.基于智能计算的多模型气象综合预报∥刘还珠, 汤桂生.暴雨落区预报实用方法.北京:气象出版社, 2000:30-37.
    [16]
    黄卓, 杨洪敏, 郝为, 等.基于智能聚类的综合相似预报∥刘还珠, 汤桂生.暴雨落区预报实用方法.北京:气象出版社, 2000: 53-59.
    [17]
    廖木星.海面风场预报的技术研究报告.青岛远洋船员学院学报, 2003, 24(2):6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-QDYY200302001.htm
    [18]
    颜梅, 范宝东, 满柯, 等.黄渤海大风的客观相似预报.气象科技, 2004, 32(6):467-470. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200406016.htm
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(1)

    Article views (4978) PDF downloads(2052) Cited by()
    • Received : 2007-09-11
    • Accepted : 2008-07-28
    • Published : 2008-10-31

    /

    DownLoad:  Full-Size Img  PowerPoint