Zhao Liang, Ding Yihui. Sources and transfer of high isentropic potential vorticity during Meiyu period. J Appl Meteor Sci, 2008, 19(6): 697-709.
Citation: Zhao Liang, Ding Yihui. Sources and transfer of high isentropic potential vorticity during Meiyu period. J Appl Meteor Sci, 2008, 19(6): 697-709.

Sources and Transfer of High Isentropic Potential Vorticity During Meiyu Period

  • Received Date: 2008-02-18
  • Rev Recd Date: 2008-08-22
  • Publish Date: 2008-12-31
  • The climatological mean sources and evolutions of isentropic potential vorticity(IPV)during Meiyu period are studied. Compared to the factors in the isobaric coordinate system during the Meiyu period, potential vorticity on the isentropic surface shows clearer "trough" and "ridge", and it is found that there are two high IPV "tongue" areas near the east of Lake Baikal and the southeast of Karafuto in the lower troposphere during the Meiyu period. And pentad IPV evolutions show that the regions where the meridional IPV gradient(MIPVG)weakens in the upper troposphere could be the entrance of high IPV air invading. Before the Meiyu rainy season the MIPVG obviously weakens in upper troposphere over East Asia, then high IPV contours begin to extend equatorward forming "tongue" area. Simultaneously, in lower troposphere MIPVG appears to reverse, shaping local north south dipole between low and high MIPVG. Evident potential vorticity transports and mass exchanges exist at tropopause near 40°N, 120°E during Meiyu period where the tropopause easily folds. By using 10—90 day bandpass and lead/lag correlation analysis, the sources and paths of high IPV anomalies are further investigated and traced. The results show that high IPV anomalies originate from the lower stratosphere and upper troposphere of the high latitude, and the maximum correlation coefficients between IPV anomalies and rainfall anomaly on 345 K isentropic surface before, during and after Meiyu period appear when the former leads the latter by about 10 days, near 55°N, 130°E in the east of Lake Baikal which is an important source of high IPV influencing the rainfall during Meiyu period. On June 10 before Meiyu, the high IPV air is transferred primarily southward along the NE—SW direction at 2 PVU surface from the high IPV source and accumulates near the steepest areas of this surface, developing upward, then crosses downward to the tropopause, and partly invades the south of 40°N when the IPV anomalies fields are typical longitudinal mode. However, in the troposphere it becomes a distribution of latitudinal mode spreading out like a fan. On 315 K isentropic surface, high IPV anomalies invade later than those in the upper troposphere, and are also transferred southward along the NE—SW direction from the high IPV source region near 45°N in the lower troposphere to the Meiyu areas since about June 18. As a result, the region on the east of Lake Baikal is possibly a main source area of cold air influencing Meiyu and key region to make the medium term forecast of Meiyu precipitation.
  • Fig. 1  The climatological mean IPV distributions on the 315 K isentropic surface(solid lines:IPV, unit:PVU, 1 PVU=10-6m2·K·s-1·kg-1, the same hereinafter)(a), height and temperature fields at 700 hPa(solid lines:height, unit:gpm; dot lines:temperature, unit:K)during Meiyu period(b), evolution of area-averaged IPV over 35°-60°N, 110°E-180°from pentad 32 to 42, meridion-pressure cross-section of PV(solid lines)and potentia l temperature(thicked dashed lines, unit:K)averaged over 110°-120°E during Meiyu period(d), and the 315 K IPV(contour), wind vector and rainfall intensity(shaded)ave raged during Jul 16-Jul 31, 1998(e)(dashed lines denote the Qinghai-Tibet Plateau with the altitude≥3000 min Fig.a, Fig.b, Fig.e, and in Fig.d shadow part denotes terrain too)

    Fig. 2  Mean meridional IPV gradients(shaded areas in Fig. a, unit : 9×10 -6PVU/m), upper-level westwind jet(shaded areas in Fig. b, ≥24 m/s)and meridional IPV transports(contours, unit: 9×10-6 PVU/ s)during Meiyu(a)315 K,(b)345 K

    Fig. 3  IPV(solid lines, 2 PVU contour is thickened)and meridional IPV gradients GPθy (shaded areas, unit: 9×10 -6PVU)at pentad 32, 34 and 36

    Fig. 4  The meridion-isentropic surface section of IPV anomalies in the 10-90-day band(shaded areas:positive, dashed lines:negative, respectively being-0.02, -0.05 and-0.2 PVU contours from interior to exterior, unit:PVU), unfiltered meridional winds(arrow heads, unit :m/s), potential height(thin lines, unit : 103 g pm)and the tropopause(unfiltered thickened 2 PVU lines)averaged over 100°-130°E from pentad 30 to 38

    Fig. 5  The meridion-time(averaged over 100°-150°E)(a)/ zone-time(averaged over 40°-70°N)(b)section of the cross correlations(thin solid curves, 0.27 solid curves denote the range of 95% confidence level, 0.60 solid curves denote high correlation areas)between 345 K IPV and area-aver aged rainfall anomalies in the 10-90-day band and IPV anomalies(shaded areas)in the same band at 345 K from May 24 to July 23

    Fig. 6  The cross correlations(thin solid lines, respectively being 0.35 and 0.60 from interior to exterior, herein 0.35 standing for the range of 99% confidence level)between 345 K IPV and area-averaged rainfall anomalies in the 10-90-day band and IPV anomalies(shaded areas)in the same band at 345 K from

    Fig. 7  The same as in Fig.6, but at 315 K from Jun 3 to July 8

    thickened dashed lines denote the Qinghai-Tibet Plateau with the altitude≥3000 m

  • [1]
    Hoskins B J, McIntyre M E, Robertson A W. On the use and significance of isentropic potential vorticity maps. Quart J Roy Meteor Soc, 1985, 111(470): 877-946. doi:  10.1002/qj.49711147002
    [2]
    Haynes P H, McIntyre M E. On the conservation and impermeability theorems for potential vorticity. J Atrnos Sci, 1990, 47: 2021-2031. doi:  10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2
    [3]
    Hoskins B J. Towards a PV-θ view of the general circulation. Tellus, 1991, 43AB: 27-35. doi:  10.1034/j.1600-0870.1991.t01-3-00005.x/abstract
    [4]
    Hoerling M P. Diabatic sources of potential vorticity in the general circulation. J Atmos Sci, 1992, 49: 2282-2292. doi:  10.1175/1520-0469(1992)049<2282:DSOPVI>2.0.CO;2
    [5]
    Davis C A. Piecewise potential vorticity inversion. J Atmos Sci, 1992, 49: 1397-1411. doi:  10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2
    [6]
    吴国雄, 蔡雅萍, 唐晓箐.湿位涡和倾斜涡度发展.气象学报, 1995, 53(4):387-405. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB504.001.htm
    [7]
    袁卓建.广义坐标系中的位涡方程.大气科学, 1999, 23(2):199-204. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199902008.htm
    [8]
    高守亭, 崔春光.广义湿位涡理论及其应用研究.暴雨灾害, 2007, 26(1):3-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200701003.htm
    [9]
    赵其庚.侵入青藏高原冷空气过程的等熵位涡分析.气象, 1990, 16(6):9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX199006002.htm
    [10]
    Davis Ch A. Emanuel K A. Potential vorticity diagnostics of cyclogenesis. Mon Wea Rev, 1991, 119: 1929-1953. doi:  10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2
    [11]
    毕慕莹, 丁一汇.1980年夏季华北干旱时期东亚阻塞形势的位涡分析.应用气象学报, 1992, 3(2):145-156. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920228&flag=1
    [12]
    陆尔, 丁一汇, 李月洪.1991年江淮特大暴雨的位涡分析与冷空气活动.应用气象学报, 1994, 5(3):266-274. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19940349&flag=1
    [13]
    高守亭, 雷霆, 周玉淑.强暴雨系统中湿位涡异常的诊断分析.应用气象学报, 2002, 13(6):662-670. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020687&flag=1
    [14]
    丁一汇, 马晓青.2004/2005年冬季强寒潮事件的等熵位涡分析.气象学报, 2007, 65(5):695-707. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200705004.htm
    [15]
    Hsu H H, Hoskins B J, Jin F. The 1985/86 intraseasonal oscillation and the role of the exttatropics. J Atmos Sci, 1990, 47: 823-839. doi:  10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2
    [16]
    Hoskins B J, Yang G Y. The equatorial response to higherlatitude forcing. J Atmos Sci, 2000, 57(9): 1197-1213. doi:  10.1175/1520-0469(2000)057<1197:TERTHL>2.0.CO;2
    [17]
    姚秀萍, 于玉斌.2003年梅雨期干冷空气的活动及其对梅雨降水的作用.大气科学, 2005, 29(6):973-985. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506012.htm
    [18]
    王遵娅, 丁一汇.中国雨季的气候学特征.大气科学, 2008, 32(1):1-13. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200801001.htm
    [19]
    Hoskins B. A potential vorticity view of synoptic development. Meteorol Appl, 1997, 4(4):325-334. doi:  10.1017/S1350482797000716
    [20]
    Charney J G, Stern M E. On the stability of internal baroclinic jets in a rotating atmosphere. J Atmos Sci, 1962, 19(2): 159-172. doi:  10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2
    [21]
    Edouard S, Vautard R, Brunet G. On the maintenance of potential vorlicity in isentropic coordinates. Quart J Roy Meteor Soc, 1997, 123: 2069-2094. doi:  10.1002/(ISSN)1477-870X
    [22]
    Dickinson M, Molinari J. Climatology of sign reversals of the meridional potential vorticity gradient over Africa and Australia. Mon Wea Rev, 2000, 128: 3890-3900. doi:  10.1175/1520-0493(2001)129<3890:COSROT>2.0.CO;2
    [23]
    Illari L. A diagnostic study of the potential vorticity in a warm blocking anticyclone. J Atmos Sci, 1984, 41 : 3518-3526. doi:  10.1175/1520-0469(1984)041<3518:ADSOTP>2.0.CO;2
    [24]
    Brunet G, Vautard R, Legras B, et al. Potential vorticity on isentropic surfaces; Climatology and diagmostics. Mon Wea Rev, 1995, 123: 1037-1058. doi:  10.1175/1520-0493(1995)123<1037:PVOISC>2.0.CO;2
    [25]
    McIntyre M E, Palmer T N. The "surf zone" in the stratosphere. J Arm Terr Phys. 1984, 46:825 849. doi:  10.1016/0021-9169(84)90063-1
    [26]
    McIntyre M E, Palmer T N. Breaking planetary waves in the stratosphere. Nature, 1983, 305: 593-600. doi:  10.1038/305593a0
    [27]
    Chen P. Isentropic cross tropopause mass exchange in the extratropics. J Geophys Res, 1995, 100(D8):16661-16674. doi:  10.1029/95JD01264
    [28]
    Brant Liebmann. Observed relationships between large-scale tropical convection and the tropical circulation on subseasonal time scales during northern hemisphere winter. J Atmos Sci, 1987, 44(18): 2543-2561. doi:  10.1175/1520-0469(1987)044<2543:ORBLST>2.0.CO;2
    [29]
    Kiladis G N, Weickmann K M. Extratropical forcing of tropical Pacific convection during northern winter. Mon Wea Rev, 1992, 120(9): 1924-1938. doi:  10.1175/1520-0493(1992)120<1924:EFOTPC>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (3991) PDF downloads(974) Cited by()
    • Received : 2008-02-18
    • Accepted : 2008-08-22
    • Published : 2008-12-31

    /

    DownLoad:  Full-Size Img  PowerPoint