Cai Zhaonan, Wang Yong, Liu Xiong, et al. Validation of GOME ozone profiles and tropospheric column ozone with ozone sonde over China. J Appl Meteor Sci, 2009, 20(3): 337-345.
Citation: Cai Zhaonan, Wang Yong, Liu Xiong, et al. Validation of GOME ozone profiles and tropospheric column ozone with ozone sonde over China. J Appl Meteor Sci, 2009, 20(3): 337-345.

Validation of GOME Ozone Profiles and Tropospheric Column Ozone with Ozone Sonde over China

  • Received Date: 2008-03-10
  • Rev Recd Date: 2009-05-05
  • Publish Date: 2009-06-30
  • Global Ozone Monotoring Experiment (GOME) with the second Earth Remote Sencing (ERS-2) on board launched in 1995. To evaluate the performance of GOME's ozone data in China, ozone sonde observations at three stations in Lhasa (1998--1999), Xining (1996), and Beijing (2002--2003) are used to vali date ozone profiles and tropospheric column ozone retrieved from Global Ozone Monitoring Experiment (GOME). Ozone detecting systems are electrochemical concentration cell (ECC) sonde at Lhasa and Xining and GPSO3 sonde at Beijing; GOME data are retrieved by Liu et al. A comparison dataset consists of 51 matching pairs are obtained by applying a baseline criteria (±6 h, ±3° longitude, ±1.5° latitude). A statistical analysis of the differences between coincident O3 profiles obtained by GOME and those obtained by ozone sondes are conducted using the methodology suggested by von Clarmann. When comparing with measurements the ozone sondes vertical resolution are much better than satellite retrievals. Retrieval averaging kernels are applied to the high-resolution data so that these data are comparable. As the high-resolu tion sondes profiles do not cover the GOME retrieval altitude range, the high-resolution profile (ozone sonde only up to about 30 km) are augmented with monthly mean climatological profiles from TOMS V8. Statistical bias determination and precision validation show that in the lower and middle troposphere, the mean biases are significant within 5% at Lhasa and Xining and within 10% at Beijing. In the upper tropo-sphere and lower stratosphere, the mean biases are within 10% at Lbasa and Xining and within 20% at Beijing. In the middle and upper stratosphere, the mean biases are within 5% at all three locations. The larger bias in the troposphere and lower stratosphere at Beijing may result from a different type of ozone sonde and different time period (ozone profiles shows multiple peaks in Beijing area in the spring). The mean biases of the tropospheric column ozone are within 10 at all three sites, which are partly caused by different estimated tropopause heights between GOME and ozone sondes. The GOME monthly mean ozone concentration at 0—2.5 km correlates well with surface ozone measurements. basically capturing the termporal variations of surface ozone at Lhasa, Waliguan, and Linan. In conclusion, from lower troposphere to upper stratosphere, GOME data used here has strong ability to reflect ozone distribution and dynamic changes in China.
  • Fig. 1  Comparison of ozone partial column between GOME and ozone sonde at Lhasa (a), Xining (b) and Beijing (c)

    (relative biasis indicated as line with solid circles; standard deviation as thinline; 3σ standard error as errorbars indicating standard error of the mean; combine destimated random error as shaded areas and combined smoothing error and random error as dotted line, respectively)

    Fig. 2  Comparison of ozone partial pressure of GOME priori profiles, retrieved profiles and ozone sonde profiles in the autumn of 2002 and spring of 2003

    Fig. 3  Comparison of tropopause pressure and tropospheric column ozone between GOME retrieval sand ozone sonde observations (a) tropopause pressure, (b) tropospheric column ozone

    (error bar denotes evaluated error)

    Fig. 4  Comaprison of GOME and surface ozone concentration at Lhasa, Linan (a) and mount Waliguan (b)

    Table  1  List of ozone sonde stations

    Table  2  Error estimation of ECC ozone sonde

    Table  3  Result of comparison of GOME and ozone sonde

  • [1]
    Chance K V, Burrows J P, Perner D, et al. Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible measurements in the nadir geometry:A potential method to retrieve tropospheric ozone. J Quant Spectrosc Radiat Transfer, 1997, 57(4):467-476 doi:  10.1016/S0022-4073(96)00157-4
    [2]
    Munro R, Siddans R, Reburn W J, et al. Direct measurement of tropospheric ozone from space. Nature, 1998, 392:168-171 doi:  10.1038/32392
    [3]
    Hoogen R, Rozanov V V, Burrows J P. Ozone profiles from GOME satellite data:Algorithm description and first validation. J Geophys Res, 1999, 104(7):8263-8280 https://www.researchgate.net/publication/37923233_Ozone_profiles_from_GOME_satellite_data_Algorithm_description_and_first_validation
    [4]
    Hasekamp O P, Landgraf J. Ozone profile retrieval from backscattered ultraviolet radiances:The inverse problem solved by regularization. J Geophys Res, 2001, 106(8):8077-8088 https://www.researchgate.net/publication/248801906_Ozone_profile_retrieval_from_backscattered_ultraviolet_radiances_The_inverse_problem_solved_by_regularization
    [5]
    Van Der A R J, Van Oss R F, Piters A J M, et al. Ozone profile retrieval from recalibrated GOME data. J Geophys Res, 2002, 107(15):4239 doi:  10.1029/2001JD000696/full
    [6]
    Muller M D, Kaifel A K, Weber M, et al. Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)). J Geophys Res, 2003, 108(16):4497 doi:  10.1029/2002JD002784/full
    [7]
    Rodgers C D. Inverse Methods for Atmospheric Sounding:Theory and Practice. World Scientific Publishing Co Ltd, 2000
    [8]
    Liu X, Chance K, Sioris C E, et al. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment:Algorithm description and validation. J Geophys Res, 2005, 110:D20307 doi:  10.1029/2005JD006240
    [9]
    Liu X, Chance K, Sioris C E, et al. Intercomparison of GOME, ozonesonde, and SAGE Ⅱ measurements of ozone:Demonstration of the need to homogenize available ozonesonde data sets. J Geophys Res, 2006, 111(D14):D14305 doi:  10.1029/2005JD006718/abstract
    [10]
    Smit H G J, Julich K D. Ozone Sonde Inter-comparison Experiment-1996 (JOSIE-1996). Global Atmosphere Watch Report Series, WMO/TD-No.926, No.130.Geneva:WMO, 1998:38-44
    [11]
    Herman G J Smit, Wolfgang Straeter. JOSIE-1998 Performance of ECC Ozone Sondes of SPC-6A and ENSCI-Z Type. Global Atmosphere Watch Report Series, WMO/TD-No.1218, Geneva:2004
    [12]
    宣越健, 马舒庆, 陈洪滨.国产GPSO3与芬兰Vaisala臭氧探空仪的比对试验.高原气象, 2004, 23(3):394-399 http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200403016.htm
    [13]
    王庚辰, 孔琴心, 宣越健. GPSO3和Vaisala臭氧探空仪平行施放比对结果的初步分析.应用气象学报, 2004, 15(6):672-680 http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040682&flag=1
    [14]
    Bian J, Gettelman A, Chen H. Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J Geophys Res, 2007, 112.D06305 doi:  10.1029/2006JD007502/full
    [15]
    Cortesi U, Lambert J C, Clercq C D, et al. Geophysical validation of MIPAS-ENVISAT operational ozone data. Atmos Chem Phys, 2007, 7:4807-4867 doi:  10.5194/acp-7-4807-2007
    [16]
    Liu Yi, Cai Zhaonan, Erkki Kyrola. Comparison of ENVISAT GOMOS and MIPAS Ozone Profiles with Balloon Sonde Measurements from Beijing. ESA Special Publication (SP-655), 2008
    [17]
    Wang T, Cheung T F, Li Y S. Emission characteristics of CO, NOx, SO2 and indications of biomass burning observed at a rural site in eastern China. J Geophys Res, 2002, 107(D12):4157, 10.1029/2001JD000724 doi:  10.1029/2001JD000724
    [18]
    乜虹, 牛生杰, 王治邦, 等.青藏高原清洁地区近地面层臭氧的特征分析.干旱气象, 2004, 22(1):1-7 http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX200401001.htm
    [19]
    汤洁, 周凌晞, 郑向东, 等.拉萨地区夏季地面臭氧的观测和特征分析.气象学报, 2002, 60(2):221-229 http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200202012.htm
    [20]
    Rodgers C D. Characterization and error analysis of profiles retrieved from remote sounding measurements. J Geophys Res, 1990, 95(5):5587-5595 doi:  10.1029/JD095iD05p05587/abstract
    [21]
    Rodgers C D, Connor B J. Intercomparison of remote sounding instruments. J Geophys Res, 2003, 108(D3):4116-4229 https://www.researchgate.net/publication/228832294_Intercomparison_of_remote_sounding_instruments
    [22]
    Von Clarmann T. Validation of remotely sensed profiles of atmospheric state variables:Strategies and terminology. Atmos Chem Phys, 2006, 6:4311-4320 doi:  10.5194/acp-6-4311-2006
    [23]
    Bevington B R. Data Reduction and Error Analysis for Physical Sciences (3rd Edition). New York:McGraw-Hill Book Company, 2003:51-71
    [24]
    王庚辰, 孔琴心, 陈洪滨, 等.北京上空大气臭氧垂直分布的特征.地球科学进展, 2004, 19(5):743-748 http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200405009.htm
    [25]
    郑向东, 李伟.国产臭氧探空仪观测数据质量分析.应用气象学报, 2005, 16(5):608-618 http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050578&flag=1
    [26]
    Ziemke J R, Chandra S, Bhartia P K. "Cloud slicing":A new technique to derive upper tropospheric ozone from satellite measurements. J Geophys Res, 2001, 106(D9):9853-9868 doi:  10.1029/2000JD900768
    [27]
    Zheng Xiangdong, Chan Chuenyu, Cui Hong, et al. Characteristics of vertical ozone distribution in the lower troposphere in the Yangtze River Delta at Lin'an in the spring of 2001. Science in China (Earth Sciences), 2005, 48(9):1519-1528. doi:  10.1360/03yd0492
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (5390) PDF downloads(1803) Cited by()
    • Received : 2008-03-10
    • Accepted : 2009-05-05
    • Published : 2009-06-30

    /

    DownLoad:  Full-Size Img  PowerPoint